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Abstract: 
The Oort Cloud, a set of comets orbiting the sun at very long distances, forms an interesting 
testing ground for various theoretical models of the galaxy and the Solar system.  Oort Cloud 
objects, because they are so distant from the sun, are extremely sensitive to the solar systemÕs 
interaction with external galactic matter.  The system is analytically complicated, but can be 
analyzed in a detailed way by utilization of a numerical simulation.  We examine the perturbative 
effects of extra-solar matter on orbits with stable non-perturbed initial conditions.  The most 
well-known external actor on the solar system is the remainder of the galaxy.  Aside from nearby 
passing stars, a very rare occurrence, the solar system is perturbed by two basic galactic forces, 
that exerted by the bulge at the center of our galaxy, and that exerted by the Galactic disk, a two 
dimensional distribution of matter along the galactic plane.  Additionally, we explore the effects 
of dark matter sub-haloes of various masses on both the unperturbed and the perturbed orbits.  
By subjecting initially stable orbits in the un-perturbed case, we establish a baseline for the 
relative effectiveness of each interaction type, and examine the resultant changes in both comet 
cloud demographics as well as observable comet flux.  The effects of extra-solar matter on the 
Oort comet Cloud can, in the right combination of both initial conditions and galactic density 
functions, exhibit behavior similar in magnitude to that provided by observation. 

 
Introduction: 
 
The Oort Cloud 
 The Oort Cloud is an immense spherical cloud of comets orbiting the sun with semi-
major axes between 20,000 and 100,000 AU.  The Oort Cloud was first inferred by the Dutch 
Astronomer Jan Oort in 1950.[[1]]  Although not directly observable by telescope, astronomers 
are fairly confident of its existence through the measurement of long-period comets and their 
points of origin.  The cloud itself is thought to contain many objects with a total mass near 40 
times that of the Earth.[[11]]  Recently, the Oort Cloud has gotten more attention from 
cosmologists who seek to use the Oort Cloud as a testing ground for various models of the 
galaxy.  It is useful for this sort of investigation because the solar gravitational forces are very 
weak, thereby increasing the relative magnitude of extra-solar perturbations.   

 
 



 
The Galactic Model 
 In examining these perturbative effects, it is necessary to formulate an exact model of the 
Galaxy.  In essence, the current model analyzes the visible component pof the galaxy as a 
superposition of two essential effects: gravity exerted by a bulge in the center of the galaxy, and 
gravity caused by the accreted disc lying along the galactic plane.  The sun itself orbits the center 
of the Milky Way on a near circular orbit of radius 8.5 kpc.  At this distance the sun encloses 1.4 
x 1011 solar masses in the galactic bulge.[[2]]   This enclosed mass value includes the portion of 
the dark halo enclosed by the sun, as well as the luminous matter concentrated at the galactic 
center.  Due to the exceptionally high mass of the central bulge, objects within the Oort Cloud 
are affected nearly as much by external mass as they are by the sun itself.  Since the sun lies 
essentially on the galactic plane, the galactic disc exerts an oscillatory force on the sun causing it 
to exhibit sinusoidal behavior across the galactic plane.  These oscillations can effectively 
ÒshakeÓ comets out of orbit.  
  
Dark Matter: 

The existence of large quantities of unseen mass in galaxies was first inferred by 
astronomer Fritz Zwicky, who noticed that galaxies orbit each other at velocities corresponding 
to masses 400 times their estimate based on luminosity profiles.  However, this theory was 
widely rejected by the scientific community until in the 1960Õs Vera Rubin began investigating 
the rotation curves of the Andromeda Galaxy.  In her analysis, she found that in order for the 
arms of the spirals to maintain their shape the angular speed of particles in those arms suggested 
a distribution of mass in the galaxy vastly different from that shown by luminosity profiles.[[7]]  
These results not only suggest the existence of Dark Matter, but by examining the rotation curve 
of a galaxy it is additionally possible to determine the distribution of matter in that galaxy.   
Assuming that visible matter comprises the entirety of the galaxy would suggest, by NewtonÕs 

laws, that the predicted rotation curve would follow a 
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Figure 1: Courtesy of  http://ircamera.as.arizona.edu/astr_250/Lectures/Lec_22sml.htm 

 
 

However, the observed rotation curve of the Milky Way Galaxy is quite different, suggesting that 
either Newtonian gravitation is inaccurate at large distances, or that the distribution of mass in 
the galaxy is vastly different from that predicted by luminosity estimates. 

 
Figure 2: Courtesy of  http://ircamera.as.arizona.edu/astr_250/Lectures/Lec_22sml.htm 

 



Using the observational data, it is possible to determine a distribution of Òhidden massÓ from the 
deviating rotation curve using the virial theorem, additionally, it is possible to determine from 
these estimates approximately how much ÒDark MatterÓ is enclosed by the solar orbit.  All in all, 
current estimates cite a net dark halo of mass 11
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entire dark halo is theorized to be comprised of many different possible candidates.  A popular 
current candidate for dark halo mass is that of Òbaryonic dark matter.Ó  Primarily this particular 
form of Dark Matter takes the form of Massive Compact Halo Objects, or MACHOs.  [[9]]  The 
question of course is, if there is MACHO Dark Matter in the Milky Way, then how much is 
there, and, in what sized quantities does it occur.  Gravitational Lensing techniques have recently 
produced interesting results in the detection of MACHOs.   An experiment started in the mid-
1990Õs has yielded detections of several probable MACHOs in the inner galactic region.[[10]]  
However, the study cannot conclusively determine the existence of sub-halo objects.  Many of 
the potential candidates have been discredited as binary events or other stellar phenomena.  
However, as time goes on and micro-lensing data becomes more complete, there does appear to 
exist a degree of evidence that MACHOs exist if perhaps not in the numbers once postulated.  
Current theory predicts a MACHO fraction of the net halo mass between 10% and 20%.  The 
detected candidates suggest a mass distribution amongst halo objects between .05 and 1 solar 
mass.  By solving the halo density function for the solar position and multiplying it by the 
MACHO fraction we attain the MACHO mass distribution in the solar vicinity about 0.01 Solar 
Masses per cubic parsec.[[12]]  Dividing this mass density by the mean MACHO mass gives the 
MACHO number density which can be used in a Monte Carlo type numerical simulation. 
 
 

The effects of Dark Matter sub-Haloes on both observable flux and cloud population are 
varied, primarily dependent upon the chosen masses of the haloes and the likelihood of their 
generation.  Current theory suggests a number distribution of sub-haloes with an upper bound at 
1 Solar mass and an absolute lower bound at one Earth mass.[[4]]  Cosmologists believe that 
MACHOs below this mass threshold would be evaporated over a galactic time scale.  Use of 
Solar massed haloes in the simulation parameters tends to depopulate the cloud very rapidly, 
while Earth massed haloes have almost no perceivable effect whatsoever.  There are, in essence, 
two effects at work here.  The increased mass of the haloes increases the efficacy by increasing 
the force magnitude, but also, since massive haloes are less frequent than light haloes, massive 
halo generation routines create a less symmetric distribution of mass.  Essentially, the mass of 
the halo determines the ÒlumpinessÓ of the MACHO field.  However, another important factor in 
the efficacy of the sub-haloes is their velocity relative to the sun.  Higher velocities cause haloes 
to pass through the solar system more quickly, giving them less opportunity to perturb orbits.  
These velocities are generated using a Maxwellian Distribution with a peak at about 150 km/s 
along each coordinate axis, giving a net mean magnitude of 240 km/s.[[5]]  The third factor 
affecting the magnitude of halo perturbations is the distribution of impact parameters.  In our 
simulation, we chose to disregard accelerations of the halos, thus, halos follow linear trajectories.  
So, if haloes are generated by calculating a random angle of incidence less than orthogonal to the 
initial position vector, the impact parameters will follow a distribution given by: 



 
A histogram output from the initial conditions of the generated haloes gives a distribution of: 
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Figure 3: Halo Impact Parameters 

 
Galactic Effects and the Oort Cloud: 

Objects with stable orbits in the Oort Cloud are nearly impossible to observe.  They are 
cold and emit no light of their own, furthermore they have no nearby light sources to reflect, in 
fact, the only Oort Cloud objects ever observed have been observed outside of the Oort Cloud.  
These observed orbits are theorized to be destabilized orbits that have lost or gained enough 
energy to enter an observably close trajectory to the sun.  Thus, it is interesting to investigate 
whether or not the current model of galactic structure can account for these observable 
phenomena. 
 Since the forces involved can become very complicated, it is unreasonable to expect an 
exact analytical analysis of the problem.  However, using a numerical simulation it is possible to 
observe the interactions in a meaningful way.  The process is to generate acceleration functions, 
stable initial conditions, and then utilize a fourth order Runge-Kutta numerical solution to plot 
the perturbed orbits as a function of time.   Using these data points it is possible to attain a 
theoretical value for the flux of comets into the observable range. 
 
The Simulation: 
 Setting up the simulation requires several additional pieces of knowledge.  Foremost, it 
needed to be variable in terms of which interactions were being considered.  This was necessary 
so that we could analyze the various aspects of the model and their effects in an isolated manner.  
Comparison of plots for identical initial conditions but varied perturbative forces gives a baseline 
for an understanding of how the individual aspects of the model physically change the system.   
Thus, the simulation contains several true false switches which allow all interactions besides 
those of the sun to be Òswitched on and off.Ó 
 Additionally, it is necessary to either provide an initial condition and numerically model 
the motion of the sun through the galaxy or find an analytical solution to the equations of motion.  



However, predefining an analytical path for the sun subjects comets to a degree of propagating 
numerical error that the sun is not subjected to.  Thus, it is more consistent to simply integrate 
the path of the sun along with the path of the comets.  For purposes of optimization, this path can 
be integrated once at startup and then be saved for further reference. 
 In the data collection for this simulation we chose to integrate sets of 1000 randomly 
generated orbits for each possible combination of chosen interactions.  This data would then be 
placed through post processing software which sorts data into bins of distance, and identifies 
observable orbits.  Furthermore, it is useful to compare which initial conditions correspond to 
bound orbital states. 
 
The Coordinate System: 
 In this particular analysis we use a coordinate system centered at the galactic center with 
z = 0 defining the galactic plane, and (x,0,0) indicating the initial position of the sun. 

 
Figure 4:Coordinate System Diagram 

  
Generating Stable Orbits: 
 Initially, it is useful to develop a set of criteria which determine whether or not an orbit is 
stable and remains within a radial upper and lower boundary.  The solution here is entirely 
analytical.  Since the fields without random perturbation are conservative and exert no net torque 
about the sun, both energy and angular momentum are conserved which when combined with 
geometric properties of ellipses yield initial velocity as a function of semi-major axis and initial 
position.[[2]] 
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 It is initially tempting to take an initial condition and rotate it by arbitrary angles to 
generate random orbits.  However, since homogeneous densities are not homogeneous in r, it is 



better to calculate a random point inside a cube until that point is also encompassed by the 
sphere, and then determine a random, orthogonal velocity.  If initial conditions are determined in 
this fashion, the distribution of points inside the sphere displays banding corresponding to the 
differential of volume with respect to r, and banding caused by solid angle approximations.   
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Figure 5: Non-Homogeneous Cross-Sections 

 
 
 Thus, to overcome this issue it is necessary to develop a technique to generate initial 
conditions which correspond to a homogeneous number distribution in the cloud.  One solution 
is to find a random point in a .125 pĉ 3 region, and then determine a velocity magnitude 
corresponding to a random semi-major axis of a particle starting at this position.  Then, a method 
is needed for determining a random unit vector orthogonal to the initial position.  Scatter plots of 
these corrected initial positions are included in Appendix A 

Determining a random unit vector orthogonal to the initial position can be done in the 
following manner.  First, it is necessary to define an ortho-normal coordinate system with one 
coordinate axis pointing in the same direction as the initial position vector.  Thus, we define a 
coordinate system: 
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Thus, if we define a vector combination of xÕ and yÕ with magnitude given by (2) we receive a 
set of random initial conditions which remain stably inside the region of interest if they are 
unaffected by external actors. 



In terms of velocity distribution, the function is not flat.  Given that the function is 
generated by two random variables (initial distance and semi-major axis) the surface distribution 
maximizes at a value of 6

4 10 10kAU yr!
" .  A histogram of the initial conditions gives the 

distribution: 
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Figure 6: Velocity Histogram 

 
The Acceleration Functions: 
 
The Galactic Bulge: 
 Depending upon the particular model chosen there are many different options for the 
gravitational potential emitted by the galactic bulge.  One popular model utilized by Masi gives a 

potential: 
2 2

( ) BG

b

M G
V r

r r

= !
+

.[[3]] 

Using the relation a V= !"  , the acceleration exerted by the bulge on an object is given by 
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The Galactic Disc: 
 The acceleration functions due to the disc are derived via GaussÕ Law for gravitation.  
Since the desired geometry is that of a cylinder, and, as such, is proportional to displacement 
from z = 0.  Given a homogenous mass distribution, this gives rise to the acceleration 

4a G z! "= # .[[2]]  This effectively ÒsqueezesÓ comets out of high z-coordinate ranges.  
Additionally, this force causes the sun itself to oscillate across the x-y galactic plane. 
 
 



The MACHO sub-haloes: 
 MACHO sub-haloes interact as point masses to all comets outside the halo itself.  The 
radius of a MACHO is determined by a critical density and its mass.  Thus, by using the density 
function to determine a mass enclosed value, GaussÕs method gives acceleration functions for 

passing haloes.  
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Thus, the total acceleration function for a comet given our simulation parameters is: 
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Data: 
 The raw data from the simulation are output in the form of a text file of ordered triples 
representing the progressing position vectors over time.   From these ordered triples it is possible 
to ascertain several useful physical quantities. 
 One useful analytical tool is the evolution of cloud population with time.  This trend 
gives a good measure of the relative effectiveness of different effects.  Additionally, these figures 
can be used to form a heuristic to test whether or not the simulation behaves similarly to 
expectations; by comparing similar order of magnitude effects and determining whether or not 
they have same order of magnitude effects on the cloud population.   
 However, in terms of checking the behavior of both the simulator and the simulated 
objects, the most useful intuitive tool is a three dimensional plot of the space curve traced out by 
the data points.  Unfortunately, good plotting software for three dimensional data sets is 
somewhat lacking.  To overcome this we wrote our own plotting software to show orbit time 
evolution and output this evolution as a set of bitmap files which could then be sequenced into an 
animation showing the motion of the simulated objects through time.  Plots of unperturbed orbits 
display the usual Keplerian kinematics.  These objects follow elliptical trajectories, and have a 
standard deviation from their expected semi-major axes of 0.0001 10kAU.  A few of these 
trajectories degenerate or display periodic expansive behavior.  This is caused by numerical 
error.  Since, in our simulation, we opted to utilize a fixed time step, some orbits because of 
small initial position and high eccentricity, experience an accelerating deviation from the 
analytical solution, which in this case is known.    This suggests proper function of the 
integration routines.  Plots of the Bulge, Disc and their combination are useful in determining the 
manner in which tidal forces interact with Oort Cloud Objects.  The Galactic Disc tends to have a 
more observable effect since it carries a larger range of force magnitudes and since this range can 
extend to much higher values than those of the Bulge objects with initial conditions in this range 
are more obviously perturbed.   

The superposition of the two effects gives a slightly smaller number of escaping orbits 
than the simple addition of escaping orbit totals for the individual effects.  This suggests an 
overlap in unstable initial conditions for both effects. 

Both the plots and the population evolutions are useful in their own rite, but since the 
only observable quantity tying the simulation to the solar system is the number of orbits which 



penetrate the planetary region of the solar system.  Experimentally speaking, astronomers detect 
approximately one of these comets every day.[[6]]  Thus, by attaining impact parameters for the 
destabilized orbits, it is possible to compare simulated flux with experimental.  In practice, 
determining these values is best achieved by utilizing numerical interpolation between the raw 
data points, and then determining whether or not the interpolated points fall inside the observable 
region.  Using this method, the three considered galactic interactions give a flux of observable 
objects over a period of 500 Myr in Table 1. 

 

Interaction 
Total Observed 
Events 

Corrected 
Events Yearly Rate 

Sun Alone 0 0 0 
Sun and Bulge 18 1800000000 36 
Sun and Disc 11 1100000000 22 
Sun Bulge and 
Disc 14 1400000000 28 

Table 1: Observable Flux without Dark Matter 
 

This figure seems low, but a correction needs to be made to reflect the fact that our 
simulations were of only 1000 objects, while astronomers estimate a population of a trillion 
objects.  Using this correction ratio, the corrected simulated fluxes become: 0, 360, 220, and 280.  
It is difficult to ascribe error boundaries on these figures since the exact mechanics of comet 
injection in the particular system is not well-known. 

 
 

 
Accuracy of the Simulation: 
 It is very difficult to ensure that a numerical simulation of a system with no analytical 
approach is behaving properly.  Since the new paths cannot be compared to an expected 
function, deviation of the simulation from the actual simulation can at best be limited to a range 
of values dependent upon the chosen time step.  Thus, a useful measure of error in a simulation 
of a conservative system is a time evolution of mechanical energy in the system.  Thus, by 
determining percentage change in the energy from initial conditions to final ones gives a good 
measure of the accumulated numerical error over time.  With a time step of 100 years and our 
implementation of Runge-Kutta we see energy evolutions of 0.00001% in solar simulations, 
0.00002% in disc simulations, 0.00001% in bulge simulations, and 0.000025% in combined 
effect simulations.  Thus, it is reasonable to expect the simulation yields physical results in the 
selected time frame. 
    
In the Future: 
 While the work done here represents a significant step forward in the understanding of 
galactic structure and its observable effects on the solar system, more simulations are needed.  It 
would be interesting to explore the effects of curved halo trajectories.  Additionally, since the 
Oort Cloud Objects are posited to be so numerous, larger scale simulations of 105 or more 
objects may give a better idea of the continuous flux effects.  Since our simulations were of a 
relatively small number of objects flux into the inner solar system was only meaningful as a 
measure of average flux over time, however, with a larger scale simulation it would be possible 
to determine the dynamic behavior of the perturbative forces and more specifically, their effects 



on observable interaction rates.  Additionally, implementation of an adaptive step-size method 
would enable exploration of cometsÕ behavior within the inner solar system.  However, to truly 
explore these effects, modeling of the gas giant planets would be necessary to observe the 
gravitational shielding effects they provide. 
 Further, it may be interesting to explore the manner in which initial distributions of both 
position and semi-major axis affect inner solar system comet injection rates as well as cloud 
population evolutions.   Theoretical material on this subject is notably lacking, since the cloud 
has small mass and is very distant, external measurement of the distribution is difficult. 

This weakness could be compensated for by doing a simulation of the early solar system 
to determine the distribution of the resulting cloud.  Additionally, the resulting velocity 
distribution could be compared to that generated by the algorithm presented in this work to 
determine how similar the resultant cloud conditions are to the projected Keplerian solution. 
Furthermore, a simulation of the Oort Cloud formation and then its subsequent time evolution 
would allow correlation of simulation injection rates to experimental injection rates to possibly 
give a rough determination of the validity of the chosen galactic model.  More critically, it is 
unclear whether or not these initial Keplerian conditions could ever arise out of solar system 
formation.  Since it is unreasonable to assume only solar forces were important in the formation 
of the cloud, modeling of this process may yield a significantly different distribution of velocity 
magnitudes, semi-major axes, and initial positions. 
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Appendix A: 
 

Generation functions for randomized trajectories between two concentric spherical shells.  
To generate random trajectories which remain between two concentric spheres it is necessary to 
accomplish three tasks, find a relation between velocity and elliptical constants, use some 
properties of ellipses to limit these constants to place the trajectory inside the desired region, and 
generalize these findings to the three dimensional case.  
 In two dimensions the equations of motion for a test particle in a bound can be shown to 
form an elliptical trajectory.  If we set a coordinate system such that the semi major axis lies 
along the x-axis with the sun at the origin. 

 
Figure 7: Elliptical Properties 

 
Since the forces involved are conservative: 
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Additionally, no external torque is present in the system: 
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Using some knowledge about ellipses it is possible to refine the system further.  Primarily, 
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Using [[A3]] in [[A1]] we get [[2]]: 
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Given this relation it is important to restrict the values of a such that the initial 

velocity is real.   

max max2a x=         (A5) 
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Figure 8: Homogeneous Cross Sections 

 
Appendix B: 
 The distribution of mass in a MACHO is given by the distribution: 
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Where !  is a number between 1 and 2.  Thus, the mass function of the MACHO is given by an 
integration of " . 
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Thus the acceleration field exerted by a single MACHO is given by: 

max1.5

1.50
max

( )
                    | |

( )
( )

| | ( )  | |  
3

H h

h

h

h h h

M G r r
r r R

r r
a r

G r r r r r r R
!"

!

#

#
# >

#
=

# # # $
#

   (B3) 

 
Appendix C: 
 
Comet Generation Algorithm: 
Comet::Comet() 
{ 
 
 double rmax = 0.5f * 20.62; 
 double rmin = 0.1f * 20.62; 
 
 double v,r,a; 
  
 while ( !InCloud(position*position,rmax,rmin)) 
 { 
 
  position[0] = 2.0f*rmax*Rand() - rmax; 
  position[1] = 2.0f*rmax*Rand() - rmax; 
  position[2] = 2.0f*rmax*Rand() - rmax; 
 
 } 
 r = sqrt(position*position); 
 
 
 a = r*Rand() + r; 
 v = sqrt(G * (2.0f/a - 1.0f/r)); 
 
  
 Vector x_p,y_p; 
 Vector x_h(1,0,0); 
 
 x_p = Cross(position, x_h); 
 y_p = Cross(position,x_p); 
 x_p = (1.0f/sqrt(x_p*x_p))* x_p; 
 y_p = (1.0f/sqrt(y_p*y_p)) * y_p; 
 
 double thet = 2.0f* 3.14159 * Rand(); 
 
 velocity = v*sin(thet) * x_p + v*cos(thet) * y_p; 
 
  
 
 
} 

 
 
 
 



Runge-Kutta 4th order Vector Form: 
Vector RungeKutta(Comet C, Bulge B, Disc D, Sun S, HaloList Hlist,double h, 
int it) 
{ 
 Vector k[4]; 
 double time = it * h; 
 
 k[0] = h * S.Grav(C.position); 
 if (b) k[0] = k[0] + h * B.Grav(C.position); 
 if (d) k[0] = k[0] + h * D.Grav(C.position); 
 if (ha) k[0] = k[0] + h * Hlist.a(time,C.position - S.position); 
 
 
 k[1] = h * S.Grav(C.position + 0.5f * h *(C.velocity + (0.5f * k[0]))); 
 if (b) k[1] = k[1] + h * B.Grav(C.position + 0.5f*h*(C.velocity + 0.5f 
*k[0])); 
 if (d) k[1] = k[1] + h * D.Grav(C.position + 0.5f*h*(C.velocity + 0.5f 
*k[0])); 
 if (ha) k[1] = k[1] + h * Hlist.a(time + h/2.0f,C.position - 
S.position+ 0.5f*h*(C.velocity + 0.5f * k[0])); 
 
 
 k[2] = h * S.Grav(C.position + 0.5f*h*(C.velocity + (0.5f  * k[1]))); 
 if (b) k[2] = k[2] + h * B.Grav(C.position + 0.5f*h*(C.velocity + 0.5f 
* k[1])); 
 if (d) k[2] = k[2] + h * D.Grav(C.position + 0.5f*h*(C.velocity + 0.5f 
* k[1])); 
 if (ha) k[2] = k[2] + h * Hlist.a(time + h/2.0f,C.position - S.position 
+ 0.5f * h * (C.velocity + 0.5 * k[1])); 
 
 k[3] = h * S.Grav(C.position + h * (C.velocity  +  k[2])); 
 if (b) k[3] = k[3] + h * B.Grav(C.position + h * (C.velocity + k[2])); 
 if (d) k[3] = k[3] + h * D.Grav(C.position + h * (C.velocity + k[2])); 
 if (ha) k[3] = k[3] + h * Hlist.a(time + h,C.position  - S.position + h 
* (C.velocity + k[2])); 
 
 return (1.0f/6.0f) * k[0] + (1.0f/3.0f)*k[1] + (1.0f/3.0f)*k[2] + 
(1.0f/6.0f)*k[3]; 
} 
 

Linear Algebra Package: 
 
Vector::Vector() 
{ 
 for (int i = 0; i < 3; i++) 
 { 
  data[i] = 0; 
 } 
} 
 
Vector::Vector(double a, double b, double c) 
{ 
 data[0] = a; 
 data[1] = b; 
 data[2] = c; 
} 



 
Vector Vector::operator +(Vector v2) 
{ 
 Vector temp; 
 temp[0] = data[0] + v2[0]; 
 temp[1] = data[1] + v2[1]; 
 temp[2] = data[2] + v2[2]; 
  
 return temp; 
} 
 
Vector Vector::operator -(Vector v2) 
{ 
 return *this + (v2*(-1.0f)); 
} 
 
Vector Vector::operator *(double c) 
{ 
 Vector temp = *this; 
 for (int i = 0; i < 3 ; i++) 
 { 
  temp.data[i] *= c; 
 } 
 return temp; 
} 
double Vector::operator *(Vector v2) 
{ 
 double sum = 0; 
 for ( int i = 0; i < 3; i++) 
 { 
  sum += data[i] * v2[i]; 
 } 
 return sum; 
} 
double & Vector::operator [](int i) 
{ 
 return data[i]; 
} 
 
Vector operator *(double c, Vector v) 
{ 
 return v * c; 
} 
 
ostream & operator <<(ostream& out, Vector v) 
{ 
 return out << v[0] << "\t" << v[1] << "\t"<< v[2] << endl; 
} 
 
istream& operator >>(istream& in, Vector& v) 
{ 
 return in >> v[0] >> v[1] >> v[2]; 
} 
 
Vector Cross(Vector v1, Vector v2) 
{ 



 Vector temp(v1[1] * v2[2] - v1[2] * v2[1],-v1[0]*v2[2] + 
v1[2]*v2[0],v1[0]*v2[1] - v1[1]*v2[0]); 
 
 return temp; 
}  
ostream & operator <<(ostream& out, Matrix M) 
{ 
 out<<M[0]<<M[1]<<M[2]; 
 return out; 
} 
Matrix::Matrix() 
{ 
 Vector temp; 
 for ( int i = 0; i < 3; i++) 
 { 
  data[i] = temp; 
  data[i][i] = 1; 
 } 
 
} 
 
Matrix Matrix::operator *(double c) 
{ 
 Matrix M = *this; 
 for ( int i = 0; i < 3; i++) 
 { 
  for ( int j = 0; j < 3; j++) 
  { 
   M[i][j] *= c; 
  } 
 } 
 return M; 
} 
 
Matrix Matrix::operator *(Matrix M) 
{ 
 Matrix M_t; 
 for ( int i = 0; i < 3; i++) 
 { 
  for ( int j = 0; j < 3; j++) 
  { 
   M_t[i][j] = 0; 
   for ( int k = 0; k < 3;k++) 
   { 
    M_t[i][j] += data[i][k] * M[k][j]; 
   } 
  } 
 } 
 return M_t; 
} 
 
Vector Matrix::operator *(Vector v) 
{ 
 Vector ret; 
 ret[0] = data[0] * v; 
 ret[1] = data[1] * v; 
 ret[2] = data[2] * v; 



  
 return ret; 
} 
 
Matrix Matrix::operator +(Matrix M) 
{ 
 Matrix ret; 
 for ( int i = 0; i < 3; i++) 
 { 
  for ( int j = 0; j < 3; j++) 
  { 
   ret[i][j] = data[i][j] + M[i][j]; 
  } 
 } 
 return ret; 
} 
 
Matrix Matrix::operator -(Matrix M) 
{ 
 return *this + (M* (-1.0f)); 
} 
 
Vector & Matrix::operator [](int i) 
{ 
 return data[i]; 
} 
 
Matrix operator *(double c, Matrix M) 
{ 
 Matrix M1 = M; 
 for ( int i = 0; i < 3; i++) 
 { 
  M1[i] = c* M[i]; 
 } 
 return M1; 
} 
 
Matrix Matrix::operator *=(Matrix M) 
{ 
 return *this * M; 
} 
 
 
Matrix rot_x(double theta) 
{ 
 Matrix rot; 
  
 double c = cos(theta); 
 double s = sin(theta); 
 
 
 
  Vector temp(0,c,s); 
  Vector temp2(0,-s,c); 
  Vector temp3(1,0,0); 
  rot[1] = temp; 
  rot[2] = temp2; 



  rot[0] = temp3; 
 
 return rot; 
 
} 
Matrix rot_y(double theta) 
{ 
 Matrix rot; 
  
 double c = cos(theta); 
 double s = sin(theta); 
 
 
 
  Vector temp(c,0,-s); 
  Vector temp2(s,0,c); 
  Vector temp3(0,1,0); 
  rot[0] = temp; 
  rot[2] = temp2; 
  rot[1] = temp3; 
 
 return rot; 
 
} 
Matrix rot_z(double theta) 
{ 
 Matrix rot; 
  
 double c = cos(theta); 
 double s = sin(theta); 
 
 
 
  Vector temp(c,s,0); 
  Vector temp2(-s,c,0); 
  Vector temp3(0,0,1); 
  rot[0] = temp; 
  rot[1] = temp2; 
  rot[2] = temp3; 
 
 return rot; 
 
} 
Matrix rot_allaxes(Vector v) 
{ 
 
 return rot_y(v[1]) * rot_z(v[2])* rot_x(v[0]); 
} 

 


