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Embedded star clusters and the formation of the Oort Cloud
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Abstract

Observations suggest most stars originate in clusters embedded in giant molecular clouds [Lada, C.J., Lada, E.A., 2003. Annu. Rev. Astron.
Astrophys. 41, 57–115]. Our Solar System likely spent 1–5 Myrs in such regions just after it formed. Thus the Oort Cloud (OC) possibly retains
evidence of the Sun’s early dynamical history and of the stellar and tidal influence of the cluster. Indeed, the newly found objects (90377) Sedna
and 2000 CR105 may have been put on their present orbits by such processes [Morbidelli, A., Levison, H.F., 2004. Astron. J. 128, 2564–2576].
Results are presented here of numerical simulations of the orbital evolution of comets subject to the influence of the Sun, Jupiter and Saturn
(with their current masses on orbits appropriate to the period before the Late Heavy Bombardment (LHB) [Tsiganis, K., Gomes, R., Morbidelli,
A., Levison, H.F., 2005. Nature 435, 459–461]), passing stars and tidal force associated with the gas and stars of an embedded star cluster. The
cluster was taken to be a Plummer model with 200–400 stars, with a range of initial central densities. The Sun’s orbit was integrated in the cluster
potential together with Jupiter and Saturn and the test particles. Stellar encounters were incorporated by directly integrating the effects of stars
passing within a sphere centred on the Sun of radius equal to the Plummer radius for low-density clusters and half a Plummer radius for high-
density clusters. The gravitational influence of the gas was modeled using the tidal force of the cluster potential. For a given solar orbit, the mean
density, 〈ρ〉, was computed by orbit-averaging the density of material encountered. This parameter proved to be a good measure for predicting
the properties of the OC. On average 2–18% of our initial sample of comets end up in the OC after 1–3 Myr. A comet is defined to be part of
the OC if it is bound and has q > 35 AU. Our models show that the median distance of an object in the OC scales approximately as 〈ρ〉−1/2

when 〈ρ〉 � 10 M� pc−3. Our models easily produce objects on orbits like that of (90377) Sedna [Brown, M.E., Trujillo, C., Rabinowitz, D.,
2004. Astrophys. J. 617, 645–649] within ∼1 Myr in cases where the mean density is 103 M� pc−3 or higher; one needs mean densities of order
104 M� pc−3 to create objects like 2000 CR105 by this mechanism, which are reasonable (see, e.g., Guthermuth, R.A., Megeath, S.T., Pipher,
J.L., Williams, J.P., Allen, L.E., Myers, P.C., Raines, S.N., 2005. Astrophys. J. 632, 397–420). Thus the latter object may also be part of the OC.
Close stellar passages can stir the primordial Kuiper Belt to sufficiently high eccentricities (e � 0.05; Kenyon, S.J., Bromley, B.C., 2002. Astron.
J. 123, 1757–1775) that collisions become destructive. From the simulations performed it is determined that there is a 50% or better chance to stir
the primordial Kuiper Belt to eccentricities e � 0.05 at 50 AU when 〈ρ〉 � 105 M� pc−3. The orbit of the new object 2003 UB313 [Brown, M.E.,
Trujillo, C.A., Rabinowitz, D.L., 2005. Astrophys. J. 635, L97–L100] is only reproduced for mean cluster densities of the order of 105 M� pc−3,
but in the simulations it could not come to be on its current orbit by this mechanism without disrupting the formation of bodies in the primordial
Kuiper Belt down to 20 AU. It is therefore improbable that the latter object is created by this mechanism.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Comets, dynamics; Orbits; Origin, Solar System; Trans-neptunian objects
* Corresponding author.
E-mail addresses: brasser_astro@yahoo.com (R. Brasser),

duncan@astro.queensu.ca (M.J. Duncan), hal@boulder.swri.edu
(H.F. Levison).
0019-1035/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2006.04.010
1. Introduction and previous work

The reader is referred to Dones et al. (2004) and references
therein for a thorough description of previous work on the for-
mation of the Oort Cloud and its dynamics, and to Lada and
Lada (2003) for a review of embedded star clusters. For this pa-
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per, however, those results on which the current work is built
are summarized below.

In 1950 Jan Hendrik Oort observed that comets with long pe-
riods have their semi-major axes concentrated near a ∼ 104 AU.
He therefore proposed that the Sun is surrounded by a spheri-
cal cloud of comets whose semi-major axes are of order a ∼
104 AU (Oort, 1950). In his model, planetary perturbations
would have placed the comets on those large, highly eccentric
orbits, so that the gravitational perturbations from passing stars
can lift their pericentres out of the planetary region. This reser-
voir of comets is commonly termed the ‘Oort Cloud.’ These
same passing stars would occasionally perturb the comets back
into the inner Solar System (perihelia q � 2 AU) where they
become much more visible due to the formation of cometary
tails.

Hills (1981) demonstrated that the phenomenon Oort ob-
served was a selection effect due to the rarity of stellar passages
capable of significantly perturbing the pericentres of comets
with a � 104 AU. He postulated that the majority of comets
could reside in an unseen Inner Oort Cloud (IOC; defined
as having a < 104 AU) at semi-major axes several thousands
of AU. The comets with a > 104 AU are often now called
‘Outer Oort Cloud’ (OOC).

How did the Oort Cloud form: how did the comets end up
having such large semi-major axes? An early series of simula-
tions to form the Oort Cloud (OC) were performed by Duncan
et al. (1987), henceforth DQT87, in the current Galactic en-
vironment with test particles starting on very eccentric orbits
with their pericentres in the outer planetary region (4–40 AU).
In their model the resulting Oort Cloud has an inner edge
at a ∼ 3000 AU; for r ∈ (3000,50 000) AU the density of
comets decreased quickly with increasing r , and the inclination
distribution for the OOC was isotropic. DQT87 demonstrated
that, in the current Solar System, comets with initial perihelion
q0 > 15 AU and semi-major axis a0 � 103 AU were much more
likely to end up in the OOC than those with smaller pericentres.
DQT87 found that there was ∼5 times more mass in the IOC
than in the OOC.

More recently Dones et al. (2004) performed simulations of
the formation of the OC in the current Galactic environment.
Unlike DQT87, they started the comets on cold orbits between
4 and 40 AU. Contrary to DQT87, they found that the IOC and
OOC are about equally massive after 4 Gyr. This discrepancy
with the work of DQT87 is caused by the different initial condi-
tions: in the work of DQT87 most of the comets that ended up
in the OC did so under the influence of Uranus and Neptune. In
the work by Dones et al. (2004), most of the comets ended up
under the control of Jupiter (see Fernández, 1997), which only
has a 3% efficiency of depositing material in the OC. The total
efficiency found by Dones et al. is about 5% at 4 Gyr.

However, Gaidos (1995), Fernández (1997) and Fernández
and Bruníni (2000) pointed out that the Sun almost certainly
formed in a much denser stellar environment than it is in today.
This could result in a much more tightly bound IOC because the
denser environment is able to torque the comets away from the
planets at a smaller semi-major axis than the current Galactic
tide does.
A first attempt to simulate the formation of the OC when
the Sun is still in a star cluster was done by Eggers (1999). In
that work, the formation of the OC was simulated for 20 Myr
using a Monte Carlo method with two star clusters, in which
the stellar encounters occurred at constant time intervals and
were computed analytically. The first cluster had an effective
density of 625 stars pc−3 and the other had an effective den-
sity of 6.25 stars pc−3. Both clusters had a velocity dispersion
of 1 km s−1. Eggers (1999) defined a comet to be in the OC if
q > 33 AU and a > 110 AU. With these definitions, he obtained
efficiencies of 1.7 and 4.8% for the loose and dense clusters, re-
spectively. His model did not include a tidal field caused by the
cluster potential. Most objects for the low-density cluster had
a = 6–7 × 103 AU and the formed OC was fairly isotropic.
For the high-density cluster, most objects were in the range
a = 3–4 × 103 AU and again had a fairly isotropic inclination
distribution.

Fernández and Bruníni (2000), henceforth FB2K, subse-
quently performed simulations of the evolution of comets start-
ing on eccentric orbits (e ∼ 0.9) with semi-major axes 100–
300 AU and included an approximate model of the tidal field of
the gas and passing stars from the cluster in their model. The
cluster had a maximum density of 100 stars pc−3, and the max-
imal density of the core of the molecular cloud in their models
was 5 × 103 M� pc−3. Their simulations formed a dense IOC
with semi-major axes of a few hundred to a few thousand AU.
The outer edge of this cloud was dependent on the density of
gas and stars in the cluster. FB2K reported they were able to
successfully save material scattered by Jupiter and particularly
Saturn, which were the main contributers to forming the IOC,
since Uranus and Neptune took too long to scatter material out
to large-enough distances (see DQT87). However, as they and
others (Gaidos, 1995; Adams and Laughlin, 2001) pointed out,
if the Sun remained in this dense environment for long, the pass-
ing stars could strip the comets away and portions of the IOC
might not be stable.

Very recently, two members of the IOC’s population may
have been found: the unusual body (90377) Sedna (Brown et
al., 2004) is thought to be a member of the IOC (see, e.g.,
Morbidelli and Levison, 2004), and perhaps so is the object
2000 CR105. The semi-major axes and pericentres of these
two objects are as = 501 AU, aCR105 = 224 AU, qs = 76 AU
and qCR105 = 44 AU. Gladman et al. (2002) proposed that
2000 CR105 is part of an Extended Scattered Disk (ESD), us-
ing a similar terminology to the Scattered Disk (SD) found by
Duncan and Levison (1997). The distinction between the ESD
and the IOC is that the former is created by planetary pertur-
bations while the latter requires an external perturber. The ESD
is thought to consist of objects with q > 38 AU (Gladman et
al., 2002) which are thus beyond the gravitational influence of
Neptune; objects with smaller q are thought to be part of the SD
(Duncan and Levison, 1997), or, to be more precise, a ‘Neptune
Scattered Disk.’ Similarly, the IOC contains objects that are no
longer under the gravitational influence of Neptune either, and
their pericentres are even larger. Gladman et al. (2002) had diffi-
culty in explaining how 2002 CR105 obtained q = 44 AU apart
from needing several Mars-sized objects on orbits far beyond
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Neptune, which have been scattered away by now. In this pa-
per, therefore, it is assumed, and subsequently demonstrated,
that 2000 CR105 can reasonably be placed onto its current orbit
by a passing star and hence is a member of the IOC.

A competing model for creating objects like (90377) Sedna,
2000 CR105 and 2003 UB313 has been investigated by Gomes et
al. (2005). In their model, a migrating Neptune traps the comets
in mean-motion resonances. Coupled with the Kozai mecha-
nism (Kozai, 1962), these resonances can lift the pericentre to
large values and is able to increase the inclination of the ob-
ject. Gomes et al. (2005) conclude that they cannot produce an
object on an orbit similar to that of (90377) Sedna. However,
they are able to reproduce 2000 CR105. The case of 2003 UB313
does not appear to be reproduced either. In their figures, there
is one object whose semi-major axis and inclination are simi-
lar to 2003 UB313, but its pericentre distance is much larger. In
those cases where the pericentre and the inclination of an ob-
ject are similar to those of 2003 UB313, the semi-major axis is
a lot larger, so that further simulations with better statistics are
required to see with what frequency objects on orbits like 2003
UB313 might be produced.

The aim of this paper is to investigate the properties of the
OC produced by starting with material on initially cold orbits
in the Jupiter–Saturn region appropriate to the period before
the Late Heavy Bombardment (LHB; Tsiganis et al., 2005) and
having them placed in the OC by the combination of perturba-
tions produced by the planets, passing stars and the tidal field
of the cluster gas and distant stars. We deliberately have not in-
cluded the influence of Uranus and Neptune. There are several
reasons for doing so. First, the formation processes of Uranus
and Neptune tend to be chaotic and erratic and may well take
>10 Myr (Thommes et al., 1999). Additionally, Uranus and
Neptune take too long to scatter material out to sufficiently large
distances that external influences—in this case the gas and stars
of the cluster—are able to lift the comets’ pericentres out of
the planetary region. This work is an improvement over that of
Eggers (1999) because of the model used for the star cluster and
the cluster gas and Fernández and Bruníni (2000) because the
particles are started on cold orbits.

It is plausible that the ejection of comets from the region of
the giant planets happened when gas was present from the prim-
itive solar nebula. At this point the effects of gas drag have not
been taken into account, but this is the topic of a forthcoming
paper, as is the subsequent evolution of the IOC and OC after
the Sun escapes from its birth cluster.

The reader should be made aware that in what follows the
term Oort Cloud or OC will be used for both the Inner Oort
Cloud and the Outer Oort Cloud for clarity purpose. No distinc-
tion shall be made for comets with a < 104 AU or a > 104 AU
since it is based on the current Galactic Environment and is
therefore not applicable to the simulations done during this
work. Indeed, it is likely that the distribution we obtain in the
OOC will be augmented by the scattering of comets originating
in the region beyond Saturn whenever Uranus and Neptune are
subsequently formed.

This paper is divided as follows: Section 2 contains a sum-
mary of the cluster model that has been adapted. Section 3
contains an analysis of some timescale arguments that arise in
the problem. Section 4 consists of the description of the numer-
ical methods and starting conditions used in the simulations.
Section 5 contains the results, Section 6 is devoted to conclu-
sions and is followed by Appendices A–C.

2. The embedded cluster

In this section the cluster model is discussed, as are some of
the properties of these embedded clusters. Most of the follow-
ing statements come from Lada and Lada (2003) and the reader
is referred to that paper for a more detailed description of these
clusters. The adopted model assumes that the Sun formed in an
embedded star cluster, which are clusters that are very young
and heavily obscured by dust since the molecular gas is still
present (Lada and Lada, 2003). The vast majority of the stars
that form in these embedded clusters form in rich clusters of 100
or more members with total mass in excess of 50 M�. In fact,
most stars probably form in clusters with between 100–1000
members (Adams et al., 2006). Typical populations of embed-
ded clusters within 2 kpc of the Sun today are 50–1500 stars
(Lada and Lada, 2003). Therefore, it is assumed that the Sun
formed in such a cluster as well. The lifetime of the gas in these
clusters is typically 1–5 Myr. Since the formation of unbound
stellar clusters is the rule and not the exception (Lada et al.,
1984), it is probable that the Sun formed in such a cluster and
escaped from it within �5 Myr. In fact, only 10% of embedded
clusters last for 10 Myr (Lada and Lada, 2003).

Recently, Guthermuth et al. (2005) have observed three em-
bedded clusters using near-IR data. The clusters in their sample
were chosen because they are rich and relatively young. One of
these clusters exhibits clumping of stars into three different re-
gions. The peak volume densities in these clusters in gas and
stars are of order 104–105 M� pc−3, with mean volume densi-
ties ranging from 102–103 M� pc−3. The highest peak volume
density quoted is 3 × 105 M� pc−3. In two of the clusters, their
observations show that 72 and 91% of the stars are in locations
with stellar densities of 104 M� pc−3 or larger, respectively. For
the third cluster this fraction is 24%. These constraints on the
stellar density are used in the present work to select a range in
central densities of the clusters used.

The reader should note that even though these densities seem
very high, one should not interpret this as meaning that there are
10,000–100,000 stars in one cubic parsec. Typically these clus-
ters have 100–1000 members, so the density is just a measure
of how compact the cluster is and how close by the stars orbit
one another.

For simplicity we adopt a model for the cluster that is often
used (e.g., Kroupa et al., 2001) and assume the ratio of stars to
gas is constant throughout the cluster. In this so-called Plum-
mer model, the potential Φ(r) and density ρ(r) are given as a
function of distance by (e.g., Binney and Tremaine, 1987)

(1)Φ(r) = GM√
(r2 + c2)

; ρ(r) = ρ0

(r2 + c2)5/2
,

where M is the total mass of gas and stars combined in the
cluster, r is the distance from the centre of the cluster, c is the
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Plummer radius and ρ0 is the central density of the gas and stars
combined. This potential has the properties that the total mass
M is

(2)M =
∞∫

0

4πr2ρ(r, c)dr = 4π

3
ρ0c

3

and the mass within a radius r of the centre of the cluster is

(3)M(r) =
r∫

0

4πx2ρ(x, c)dx = M
r3

(r2 + c2)3/2
.

The half-mass radius of the cluster can be computed by solving
the equation M(r1/2) = 1

2M and has the solution

(4)r1/2 =
√

3

3

(
1 + 21/3) c ≈ 1.305 c.

Adams et al. (2006) note that observed embedded clusters are
often more centrally condensed than Plummer models. How-
ever, it will be shown in what follows that the main determinant
of the structure of the OC is the mean density the Sun encoun-
tered. Thus details of the cluster model are not likely to be
important.

The orbit of the Sun in the above potential has a fixed energy
and angular momentum so that the pericentric and apocentric
distances are constant and the orbit stays in a fixed plane. How-
ever, the orbit is non-Keplerian and can best be described as
a rosette figure. Fig. 1 shows two solar orbits projected on the
x–y plane. The solid line shows the typical rosette figure for
a low-eccentricity orbit while the other, shown with a dashed
line, is a more radial orbit. The Plummer radius in this figure is
about 20,000 AU and the central density is ρ0 = 105 M� pc−3.

The effect of the cluster on the dynamics of the comets is
as follows: The combined effect of the cluster gas and stars in-
duces a tidal acceleration on the comets. Its derivation and the
motion of a comet under the dynamical influence of the Sun
and the tidal field is given in Appendix A. In short, the tidal
torque induces a coupled oscillation in the eccentricity and the
inclination similar to the Kozai mechanism (Kozai, 1962). For
inclinations above some critical value, the evolution of the ar-
gument of pericentre, ω, is able to change from circulation to
libration and the amplitude of variation in eccentricity can in-
crease dramatically. The libration width of ω, as well as the
critical inclination above which libration occurs, are a function
of ζ = c/r�, where r� is the distance of the Sun to the clus-
ter centre. As the Sun revolves around in the Plummer potential
on an eccentric orbit, the tidal field pulses rhythmically, increas-
ing and decreasing in strength, being maximal near r� ∼ c. The
resultant torquing of the comets can lift their pericentre, remov-
ing them from the planetary region and stores them temporarily
in the OC for a time equal to a precession time (which can be
�1 Myr). Additionally, the Sun will encounter stars as it orbits
the cluster centre. The effect of these passing stars also results
in the pericentres of the comets being lifted to large-enough
values that they are no longer under the influence of the plan-
ets, and thus are safe from being ejected. In addition, the stars
can place the comets in regions where the tides do not act, i.e.,
where the precession timescale is long compared to the lifetime
of the cluster, so that by the time the Sun leaves said cluster,
these comets will stay there.

It is useful to estimate what the timescale is for plane-
tary scattering to move comets to distances where they can be
torqued, as well as the time needed to lift their pericentre out of
the planetary region. These different timescales will be exam-
ined next.

3. Forensic astronomy: Timescale arguments

The evolution of the comets depends on several factors. First,
to produce a substantial OC the density of gas and stars aver-
aged over a solar orbit needs to be sufficiently high to lift the
pericentres of the comets out of the planetary region in a short
enough time to avoid them from being ejected. This can be done
by the tides (provided the libration timescale is long compared
to the cluster lifetime), stars or both. However, if the density
is too high a passing star may strip all the comets away before
the Sun leaves the cluster. Second, the density and size of the
cluster will determine whether or not there will be any O-stars
present (Kroupa et al., 2001). The presence of O-stars is dev-
astating to the interstellar gas (Oort and Spitzer, 1955), which
will disappear on the order of a cluster crossing time once an
O-star formed (Kroupa, 2000): almost instantaneous compared
to the evolution of the cometary orbits in the case of dense clus-
ters.

The O-stars tend to form last (e.g., Henriksen, 1986). The
time-delay for the massive stars to form after the smaller ones
is thought to be a weak function of the mass. For example,
Henriksen (1986) argues that the timescale of formation of a

Fig. 1. Two solar orbits for a central density of ρ0 = 105 M� pc−3 and a Plum-
mer radius of 20,000 AU projected onto the x–y plane. The solid curve shows
the typical rosette figure for a low-eccentricity orbit while the dashed curve
shows a highly-eccentric orbit that takes the Sun far from the cluster centre. All
units are in AU.
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star of mass Ms is

(5)ts = k M
1/4
s ,

where the coefficient k = 1–3, the mass Ms is in solar masses
and the unit of ts is in Myr. For an 8 M� star the time-delay in
formation from that of the Sun is about 1.7–5.4 Myr. However,
since the gas lifetime usually does not exceed 5 Myr, the up-
per limit is not realized. In addition, Bally et al. (1998) found
observationally that in the Orion nebula the high-mass stars are
younger than those of small mass, supporting the above claim.

Therefore, there might be enough time before the Sun es-
capes for Jupiter and Saturn to form and scatter comets origi-
nally in their vicinity out to sufficiently large distances so that
the tides and stars can lift the pericentres of the comets out
of the planetary region before they are ejected. Of course, the
question remains ‘what is t = 0?’ In our model, t = 0 corre-
sponds to the moment Jupiter and Saturn have fully formed and
begin to significantly scatter material.

For sufficiently large cluster densities, it will be shown that
∼1 Myr is long enough for the tides to save a fair number of
comets before the gas is blown away and the Sun escapes from
the cluster. Another issue is the time needed for Jupiter and Sat-
urn to eject the comets versus the time needed by the tides to
lift their pericentres out of the planetary region. This will be
discussed next.

In Appendix B, the tidal model of DQT87 is adapted to the
current situation to derive a formula for the lifting time of the
pericentre distance q caused by the cluster tides. It is given by

(6)

tq = 1.78 × 10−2 csc2 η
�q√

q

(
103

a

)2(104

ρ0

)
(1 + ζ 2)5/2

ζ 3
Myr,

where a (semi-major axis) and q (pericentre distance) are mea-
sured in AU and ρ0 in M� pc−3 and η is the comet’s inclination
with respect to the plane of the Sun’s orbit about the cluster cen-
tre (see Appendix B). It is found to be a good indicator to use
the mean density 〈ρ〉 that the Sun encounters in the cluster, and
is typically 〈ρ〉 ∼ 0.1ρ0 (since ρ = 0.18ρ0 when r� = c and
ρ = 0.08ρ0 when r� = r1/2). The parameter ζ = c/r� (see Ap-
pendix A). As it turns out ζ−3(1 + ζ 2)5/2 ∼ 10 for ζ ∈ (0.5,2),
which is typical for many orbits, so that one can write

(7)tq ∼ 1.78 × 10−2 csc2 η
�q√

q

(
103

a

)2(104

〈ρ〉
)

Myr.

Another timescale for lifting the pericentres of the comets
is the torquing time caused by the perturbations of the passing
stars. From DQT87 it is known this has the same functional
form as Eq. (6). Hence one has

(8)
tq

t∗
≈ 3

4
csc2 η,

where it has been assumed that the mean stellar density is a
quarter of the mean gas density because the Stellar Formation
Efficiency (SFE; the ratio of gas turned to stars) is taken to be
25%, in accordance with Kroupa et al. (2001). When η = 60◦,
which is a typical value, tq ≈ t∗, so that from now on only tq
is mentioned. (Of course this argument is invalid when in rare
cases η is very different from 60◦ or when ζ is either small or
large.) These timescales should be compared to the diffusion
time, td for Jupiter and Saturn to change a comet’s semi-major
axis by a factor of two once a � q , and is given by (DQT87)

(9)td = 3.16

√
103

a

(
10−4√〈u2〉

)2

Myr,

where
√〈u2〉 is the rms energy perturbation per perihelion pas-

sage. In the pre-LHB system the value of
√〈u2〉 for a given

value of q is different than in the current Solar System (see Ap-
pendix D), so a plot analogous to DQT87’s Fig. 1 was created
and the values of

√〈u2〉 from that graph were used. This result
is displayed in Fig. 2. The reader is referred to Appendix D for
details of this computation.

Given
√〈u2〉 as a function of q , one can construct the analog

of DQT87’s Fig. 2 for the pre-LHB system, once the density
of the cluster has been fixed. Fig. 3 shows the values of td
as a function of a for q = 5, 7 and 10 AU (nearly horizontal
lines) and lines of tq for �q = 5 AU, q0 = 7 AU, η = 60◦ and
〈ρ〉 = 10, 103 and 105 M� pc−3 (downward-sloping lines). The
line showing the orbital period is also drawn (upward-sloping).
Since the quantity

√〈u2〉 is not well defined because of the dis-
tribution in u as a function of orbital elements, the value of 〈|u|〉
was used for the lines showing td . The reader is referred to Ap-
pendix D for further discussion regarding this issue.

Once the comets are scattered to semi-major axes a � q ,
they tend to diffuse outward in semi-major axis along lines of
constant q . The comets evolve approximately along the lines of
td , which are slowly decreasing with increasing a. Two things
can happen to the comet, depending on which line it crosses
first: if it crosses the period line (increasing with a) before it
crosses the line of tq for a given value of 〈ρ〉, the comet has a
chance of being ejected on the next passage through the region
of the jovian planets; if the other case occurs, that is, the line of
tq is crossed before the period line, the comet is usually lifted

Fig. 2. The rms value of the change in 1/a as a function of pericentre distance,
q , for the pre-LHB and current Solar System. The pre-LHB data is shown with
bullets while the data for the current Solar System is shown with asterisks.
There are 36 bins in q containing 270 comets each.
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Fig. 3. Plot of the relevant timescales of a comet’s evolution as a function of
semi-major axis. Three values of td are plotted, for q = 5 (thin), 7 (medium)
and 10 AU (thick, near-horizontal, solid lines). Three values of tq are plotted,
for 〈ρ〉 = 10 (thin), 103 (medium) and 105 M� pc−3 (thick, downward-sloping,
broken lines). The line showing the period is also plotted (upward-sloping, dot-
ted).

by the tide and stars and can thus be saved from being ejected.
The intersection of the lines of td and tq indicates the value of
a at which the lifting is likely to begin and is a measure of the
inner edge of the OC.

As it turns out, a mean density of at least 〈ρ〉 = 2400
M� pc−3 is needed to save the comets from Saturn. This value
is obtained by solving the equation td = a3/2 for a, substitut-
ing this value into the equation for tq and then solving the
equation tq = td for 〈ρ〉, given u at Saturn’s orbit. As can be
seen from Fig. 3, even when 〈ρ〉 = 105 M� pc−3, the comets
with pericentres close to Jupiter can barely be saved, because
the mean kick in energy from this planet is too strong. How-
ever, for all the densities shown, a fair number of comets from
around Saturn can be saved, with the subsequent OCs being
formed ranging in size from a few hundred to several thou-
sand AU. The reader should be aware that the above argument
only applies for comets that are still in the diffusion limit. In
practice, the non-Gaussian nature of the distribution of plane-
tary energy changes (Everhart, 1968) ensures that only a small
fraction of the comets from both Jupiter and Saturn can end up
in the desired region. If the distribution were a Gaussian one
and the tails are neglected (Kerr, 1961), this fraction would be
larger.

Now that one has an idea of the relevant timescales and para-
meters needed, the initial conditions and numerical simulations
are discussed next.

4. Numerical methods and initial conditions

This section is devoted to the discussion of the numerical
methods and initial conditions used for the simulations.

4.1. Numerical integrator

A total of 2200 test particles were simulated in each run,
which lasted up to 3 Myr, using a modified version of the
RMVS3 integrator of the SWIFT package of Levison and Dun-
can (1994). This integrator is based on the symplectic Wisdom–
Holman mapping (Wisdom and Holman, 1991). The model
includes the gravitational effects of the Sun, Jupiter and Sat-
urn, with the latter two being placed on their pre-LHB orbits
(Tsiganis et al., 2005; Jupiter is at 5.45 AU, Saturn at 8.2
AU), together with the tidal field of the cluster (see Appen-
dix A) and passing stars; the effects of the latter are computed
by direct integration. The method of generating the initial pa-
rameters for the passing stars are discussed below. The first
2000 test particles are placed on cold orbits with semi-major
axes uniformly spaced from 4 to 12 AU. The remaining 200
have a ∈ [20,50] AU and resembles a primordial Kuiper Belt.
The stirring of this belt by stellar passages is a measure of the
damage these close stellar passages do to the system and will
be discussed later. The rms values of eccentricity and inclina-
tion are 0.02 and 0.01 radians, respectively. Additionally, the
orbit of the Sun itself is computed as it revolves around the
cluster centre, without suffering other stellar encounters, using
the leapfrog method in the relevant Plummer potential. This en-
sures that the tides change with time over a solar orbit, which
is more representative of the actual situation rather than assum-
ing the Sun is on a circular orbit. The decision was made not
to monitor how the individual encounters changed the orbit of
the Sun since this makes a statistical analysis of the OC as a
function of cluster parameters much more complicated.

Preliminary experiments were performed by including the
pre-LHB Uranus and Neptune in the simulations (located at
11.8 and 14.2 AU, respectively). Ignoring the question of
whether or not these two planets have already formed, even in
the compact pre-LHB configuration it takes these planets too
long to scatter material far enough out for the tides and stars to
save them for the duration of the simulation. Additionally, the
efficiency of passing planetesimals down to Saturn and Jupiter
is too low to matter in the final result. Therefore, it was decided
not to include these planets in the final simulations.

The computations were performed with a time-step of 0.4
years. The same time step was used for the Sun. The positions
and velocities of the Sun, planets and test particles were writ-
ten to disk every 10 kyr in the heliocentric frame, except for
those of the Sun, which are written with respect to the clus-
ter centre. The orbits of the test particles were computed for
up to 3 Myr, or until a particle became unbound and/or was
further than some specific distance from the Sun (either a Plum-
mer radius for low-density clusters or half a Plummer radius
for high-density clusters), or it collided with a planet or came
within 0.005 AU from the Sun. The reason that the removal ra-
dius was set to the Plummer radius for low-density clusters is
because experiment showed that the 90th percentile value of
the mean distance of the comet from the Sun was compara-
ble to c. For high-density clusters this turned out not to be the
case, and it was determined that introducing the stars at half
a Plummer radius was sufficient. Therefore, passing stars were
introduced (and removed) at a distance equal to the Plummer
radius for low-density clusters, and half a Plummer radius for
high-density clusters.



Star clusters and comet cloud 65
4.2. Cluster parameters and passing stars

The masses of stars were selected using the generating func-
tion of Kroupa et al. (1993) with a cutoff at 0.01 M� instead
of 0.08 M�. This was done to make the fit better for low-mass
stars while retaining the good fit for heavier stars. The generat-
ing function is given by

(10)Mj = 0.01 + 0.19ξ1.55 + 0.05ξ0.6

(1 − ξ)0.58
,

where Mj is the mass of star j in solar masses and ξ ∈ [0,1)

is a random number. The distribution of Eq. (10) gives a mean
stellar mass of 0.379 M�. For the central cluster density, ρ0,
we used values 102–106 M� pc−3 with a star formation effi-
ciency (SFE) of 25%. This value is somewhat on the higher
end of the typical range of 5–30% (Lada and Lada, 2003), but
in accordance with Kroupa et al. (2001). The upper limit of
the central density is chosen because Guthermuth et al. (2005)
found a maximum central density of ρ0 = 3 × 105 M� pc−3, so
that an upper limit of 106 seems justified in the computations.

To generate a catalog of stellar encounters for a given simu-
lation, it was first necessary to construct an N -body realization
of the desired Plummer model. Having specified the central
density, ρ0, and Plummer radius, c, the total cluster mass M

(gas plus stars) was then given by Eq. (2). For the assumed
SFE and stellar mass function, the number of stars was then
0.66 of the total mass in the cluster. To reproduce the assumed
spatial distribution of the stars, each star was assigned an ini-
tial radius given by inverting Eq. (3) and consecutively placing
each star randomly at a point on a sphere of the prescribed ra-
dius. To assign a velocity to each star, it was assumed that the
Plummer model had an isotropic velocity distribution, which
meant that the phase space volume density followed that of
a polytrope of index n = 5 (cf. Binney and Tremaine, 1987).
This in turn meant that the magnitude v of the velocity vector
had a distribution at a given radius r which was proportional
to v2(Φ(r) − v2/2)7/2, where Φ(r) is given by Eq. (1). Having
specified r for each star, a value of v was drawn from this veloc-
ity distribution via a Von Neumann rejection technique (Press
et al., 1992). The Cartesian components of the velocity vector
were then assigned to assure an isotropic distribution. Finally,
the mass of each star was selected using the generating function
of Eq. (10).

Having constructed an N -body realization of the desired
cluster, the orbits of all stars were integrated using a simple
leapfrog integrator under the influence of forces derived from
the potential of the gas and distant stars, given in Eq. (1). Close
interactions among stars are not incorporated at this stage. For
each star with mass in the range 0.8–1.2 solar masses (typically
∼10 stars in the desired clusters), a catalog of stellar encounter
parameters with all the other stars was generated. That is, the
time, intruder mass, and position and velocity vectors of each
intruder relative to the star in question were recorded when
each intruder first encountered a sphere of prescribed radius—
typically 0.5–1 Plummer radii. The stellar encounters were later
integrated in the RMVS3 simulation described above.
Note that the desire in this paper was to be able to determine
the range of OC distributions resulting from a given orbit, i.e.,
a given stellar eccentricity, inclination and mean distance, in a
prescribed cluster. Thus, it was decided to view each star’s orbit
as a ‘probe’ of the varying tidal and cluster environment as the
star moved on an orbit determined by the overall potential of
the cluster. As a result, star–star scatterings, which would cause
a given star’s orbit to change unpredictably over several revolu-
tions, were not included in the integration of the orbits since it
does not allow for a statistical description of the data. The sta-
tistical effects of the individual encounters on the development
of the OCs are, of course, incorporated in the SWIFT integra-
tions performed subsequently.

The cluster gas was assumed to be of constant density
throughout the runs. This is justified because the gas disappears
on the order of a crossing time (Kroupa, 2000) and only after
the O-stars form, which appear to form with some delay (Bally
et al., 1998).

No binary star encounters were simulated. Even though the
majority of stars in the cluster are formed in binaries (e.g.,
Kroupa, 2000), many of these, especially those widely sep-
arated, are disrupted in about twenty crossing times, so that
except for the least-dense clusters, most of the wide binaries
dissociate within the timeframe of our runs. In some cases the
binary nature of the perturbers can be important (Adams and
Laughlin, 2001). However, several experiments were performed
with parameters appropriate to the clusters used, which showed
that binary star encounters with the separations expected in our
clusters produced almost identical results to encounters with a
single star of the same total mass as the binary system. After
our simulations were completed, we became aware of the work
of Adams et al. (2006), who found similar results concerning
binaries. They performed simulations lasting 10 Myr of em-
bedded clusters for several values of N , the number of cluster
members. They argued that many stars have subvirial velocities,
i.e., velocities below that set by what is required for the clus-
ter to be in virial equilibrium (see, e.g., André, 2002), which
they incorporated in their simulations. Their results show that
binary encounters play almost no role in the cluster sizes they
examined (N = 100–1000). Second, from their computed dis-
tribution of closest approaches they find that a typical star will
have one encounter for the timespan of their simulations in the
range bc = 700–4000 AU, which is not close enough to appre-
ciably perturb the orbit of the current Neptune. The circumstel-
lar disks are truncated to about 1/3 of this distance (Kobayashi
and Ida, 2001), well beyond the current orbit of Neptune, so
that most planetary systems survive the birth aggregate without
disruption. Third, by performing Monte Carlo simulations of
binaries passing by the Sun and the current jovian planets and
comparing that to the results of the simulations of their clusters,
they show that for clusters containing 300 stars the ejection rate
of planets from their stars per cluster of Jupiter-like planets is
about 0.15/Myr and 0.7/Myr for Neptune-like planets. Fourth,
the authors conclude that in clusters these sizes, FUV radiation
does not generally inhibit planet formation. These results are
used in our simulations, sometimes implicitly.
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A summary of the parameters for each cluster that is used is
given in Table 1. The parameter tc is the crossing time and ri is
the tidal limiting influence of the Sun; it is given in parsec and
is computed for a� = c. For different values of a� one needs to
multiply this by a�/c. Table 2 lists the solar mean distance, ec-
centricity and inclination with respect to the cluster centre for
each run and the mean density averaged over a solar orbit. The
mean distance is computed as a� = (Q� + q�)/2, where Q�
and q� are the apocentre and pericentre of the Sun’s orbit. The
eccentricity, although in principle undefined since the orbit is
not Keplerian, is computed as e� = (Q� − q�)/(Q� + q�).
The latter is basically a means to describe how radial the or-
bit is, but is not uniquely defined (Adams and Bloch, 2005).
The inclination is obtained from the angular momentum vec-
tor.

The above method is a significant improvement over that of
Eggers (1999). Even though his simulations lasted 20 Myr and
ours only 3 Myr, the embedded cluster phase does not usually
last longer than about 5 Myr, so that doing the runs for 20 Myr
in the embedded cluster environment is unrealistic. In addition,
the model employed is self-consistent for both the cluster and
the comets, while Eggers (1999) approximated the passing stars
from his clusters analytically and used a Monte Carlo method
for the comets. Furthermore, the current method is an improve-
ment over that of FB2K since the comets are started on cold
orbits in the vicinity of the gas giants.

Table 1
The relevant parameters for the embedded clusters

ρ0
(M� pc−3)

c

(pc)
σ

(km s−1)
tc
(Myr)

N M

(M�)
ri
(pc)

102 0.8 0.444 1.784 145 214 0.133
103 0.4 0.702 0.564 182 268 0.062
104 0.2 1.110 0.179 227 335 0.029
105 0.1 1.755 0.056 284 419 0.013
106 0.05 2.774 0.018 355 524 0.006

The first column lists the central density, the second lists the Plummer radius,
the third is the one-dimensional velocity dispersion, the fourth is the crossing
time, the fifth is the total number of stars, the sixth is the total mass of the cluster
in stars and gas and the last column is the tidal radius of the Sun in pc.
5. Results

In the following section the results of the simulations of
the formation of the OC for different cluster central densities,
Plummer radii and solar eccentricities and inclinations are pre-
sented.

In what follows, three regions of phase space are used to
classify objects. At this stage, the primordial ‘Kuiper Belt’ ob-
jects are not taken into account. First, the ‘quiescent’ population
contains objects with q < 35 AU and e < 0.1 and is thus bound.
The ‘Jupiter–Saturn Scattered Disk’ or ‘JS-SD’ population has
q < 35 AU and e > 0.1 and is bound. Last, a comet is consid-
ered part of the OC if it is bound and has q > 35 AU. The value
of q for OC members is chosen to ensure that the comet will
not evolve significantly due to the influence of Neptune, even
after the latter has migrated to its current orbit (Fernández et
al., 2004). While it might be argued that a threshold value of
40 AU is better, choosing either value does not affect the final
outcome significantly: typically <4% of comets in the simu-
lated OC have q between 35 and 40 AU. Only for the highest
density clusters does this increase to about 8%. The runs are
identified by the central density of the cluster, because this pa-
rameter is known beforehand while the average density is not
since it depends on the Sun’s orbit. The average density, though,
is typically an order of magnitude lower than the central one
(see the fourth column of Table 2).

5.1. Overview

For a given cluster density and solar orbits, it can be shown
that objects on orbits like that of (90377) Sedna can be repro-
duced. A sample trajectory is examined to demonstrate how
an object ends up on such an orbit (Fig. 4). For this run the
central density of the cluster is ρ0 = 105 M� pc−3 and the
Sun’s inclination is i� = 56◦. Since the Sun’s eccentricity is
0.44, and the mean distance is 1.12 Plummer radii, the orbit-
averaged density is computed to be 〈ρ〉 = 1.44 × 104 M� pc−3.
The comet commences its journey in the vicinity of Jupiter
[(a, q) ∼ (5,5)], until it ends up under the influence of Sat-
urn (q ∼ 10 AU). After rattling around 10 AU, the particle’s
semi-major axis, a, gradually increases while its pericentre, q ,
remains fixed. However, once a ∼ 300 AU, the cluster tides
Table 2
The orbital parameters of the solar orbits for each run sorted by run number and central cluster density

Run 102 103 104 105 106

1 0.437, 0.529, 84.4, 0.599 0.531, 0.622, 80.2, 0.484 1.367, 0.639, 62.8, 0.104 4.853, 0.881, 55.2, 0.01 0.456, 0.473, 27.2, 0.592
2 16060, 0.99995, 100.2, 0.015 1.020, 0.722, 54.3, 0.144 0.904, 0.106, 135.1, 0.224 1.105, 0.578, 116.4, 0.160 0.628, 0.353, 70.0, 0.426
3 0.424, 0.368, 100.8, 0.629 0.590, 0.513, 126.8, 0.449 0.440, 0.649, 122.7, 0.579 0.837, 0.513, 20.2, 0.269 1.438, 0.519, 71.1, 0.086
4 0.546, 0.621, 75.4, 0.445 1.290, 0.465, 72.3, 0.137 0.942, 0.191, 74.3, 0.202 0.730, 0.271, 116.8, 0.341 1.141, 0.095, 37.2, 0.126
5 1.452, 0.317, 110.4, 0.103 1.140, 0.551, 46.8, 0.175 1.328, 0.198, 114.8, 0.080 1.122, 0.438, 55.5, 0.144 1.552, 0.174, 33.6, 0.049
6 1.170, 0.759, 69.9, 0.222 1.013, 0.330, 101.2, 0.186 1.315, 0.352, 99.2, 0.090 1.812, 0.387, 80.8, 0.036 1.414, 0.498, 64.4, 0.087
7 0.762, 0.667, 46.6, 0.355 0.668, 0.834, 15.3, 0.382 1.233, 0.695, 71.3, 0.142 1.265, 0.536, 105.9, 0.117 0.879, 0.895, 95.0, 0.228
8 1.312, 0.706, 79.1, 0.149 0.859, 0.250, 91.1, 0.244 2.345, 0.317, 125.6, 0.013 1.289, 0.499, 42.6, 0.110 1.464, 0.556, 118.8, 0.085
9 2.390, 0.037, 153.6, 0.008 1.500, 0.729, 158.2, 0.088 4.011, 0.640, 95.32, 0.005 2.707, 0.716, 138.7, 0.024 1.624, 0.707, 64.8, 0.079
0 4.258, 0.094, 161.7, 0.001 4.647, 0.490, 77.4, 0.001 9.827, 0.0959, 130.4, 9.06E–6 2.560, 0.632, 45.1, 0.020 3.152, 0.604, 38.7, 0.009

The first entry is the mean distance in parsec, the second is the eccentricity and the third is the inclination, in degrees and the fourth is the mean density of the orbit.
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lift the particle’s pericentre away from Saturn quickly enough
to avoid ejection. (From Fig. 3, it can be estimated that for
〈ρ〉 ∼ 104 M� pc−3 and q ∼ 10 AU, this lifting indeed should
be likely at a ∼ 200 AU.) The comet subsequently evolves in
q at constant a, which is the reverse of what it does when un-
der the influence of a planet. The particle does not nicely bob
up and down in q along lines of constant a because of the in-
fluence of the passing stars. The final values at the end of the
simulation are (a, q) = (550,25) AU.

Fig. 4. A sample trajectory in a–q space of a particle that ends up on a
Sedna-like orbit. Motion at nearly constant q is caused by planetary pertur-
bations while motion at nearly-constant a is governed by the cluster tide and
stars.
Second, the formation of a sample OC as a function of time
is examined in the form of a few snapshots. Fig. 5 displays
snapshots of the same run as in Fig. 4. The horizontal axis is
the instantaneous semi-major axis, a, of the comet while the
vertical axis is its instantaneous pericentre distance, q , both
measured in the frame centred on the barycentre of the Solar
System. Orbits like those of (90377) Sedna, 2000 CR105 and
2003 UB313 are represented by the big black bullets. The snap-
shots are taken at 10 kyr, 100 kyr and 1 Myr. Objects with orbits
like (90377) Sedna and 2000 CR105 are in the resulting OC
while there are no objects with orbits like 2003 UB313. Ad-
ditionally, the OC’s inner edge is at a smaller semi-major axis
than what is predicted with the theory above—this will be dis-
cussed in more detail later. Either way, it is clear that the outer
edge of the OC is formed first and the inner edge later. This is
unsurprising because the comets are torqued faster at larger a

than they are closer in. Additionally, infrequent, close passing
stars can deposit the comets in the inner region with pericen-
tres large enough and semi-major axes small enough that planet
and tidal perturbations act very slowly, thereby shaping the in-
ner regions of the cloud. But what effect does the cluster density
have on the location and shape of the OC? This shall again be
displayed in the form of a few snapshots.

Fig. 6 shows snapshots at the end of five different runs in
a–q phase. The panels show one run selected from each of
the different central densities respectively, with the lowest den-
sity in the bottom panel and the highest in the top, left one.
Objects like (90377) Sedna are typically formed at this time
Fig. 5. Snapshots in a–q space at 10 kyr (top panel), 100 kyr (middle panel) and 1 Myr (bottom panel) for one run with ρ0 = 105 M� pc−3. The mean density the
Sun encountered during this run is 〈ρ〉 = 1.44 × 104 M� pc−3. One can see that after 1 Myr (bottom panel) a substantial OC has formed; in this case not much
happens after that, so that one ends up with a well-populated OC. The efficiency for this run after 3 Myr is 14%. The positions of (90377) Sedna, 2000 CR105 and
2003 UB313 are marked with bullets.
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Fig. 6. Snapshots in a–q space at the end of five different runs, one from each set of runs with a different central density. The mean densities the Sun encountered
are shown above each panel. The lowest is at the bottom. Note that the extent and median values of a of the members of the OC increase with decreasing density, as
is expected. Also notice that objects with orbits like (90377) Sedna and 2000 CR105 only form through this mechanism when the density is high.
when 〈ρ〉 � 103 M� pc−3. This is in good agreement with
Fig. 3: for values of a similar to (90377) Sedna, the line for
td crosses the period line before it crosses the tq line when
〈ρ〉 = 103 M� pc−3 or lower for orbits with q > 7 AU, and
so the comets are more likely to be ejected rather than saved.
The same can be said of 2000 CR105 when 〈ρ〉 � 104 M� pc−3.
For higher densities, though, the td line crosses the tq line be-
fore it crosses the period line and therefore those comets that
do get lifted may have semi-major axes similar to 2000 CR105

and (90377) Sedna. This result enables one to narrow down
the range in ρ0 of the cluster from which the Sun originated,
provided that the solar eccentricity, inclination and semi-major
axis play a lesser role and that (90377) Sedna and 2000 CR105

formed through this mechanism. However, it can be seen that
an OC can form for all densities. The range in semi-major axis
where this cloud resides is a function of the central density: the
denser the cluster, the tighter the subsequently formed OC.

Additionally, in the top-left panel, where ρ0 = 106 M� pc−3

and 〈ρ〉 = 9 × 104, the stars and tides are stripping away the
comets and the location of (90377) Sedna appears close to the
outer edge of the formed OC. Even though there are comets
beyond its orbit, from the figure one sees the density of dots
has decreased significantly. Therefore, providing that the other
parameters play a lesser role, the optimum central density at
which to form both (90377) Sedna and 2000 CR105 within
3 Myr by this mechanism is ρ0 = 105 M� pc−3, resulting in an
optimal mean density of 〈ρ〉 ∼ 104; in addition, for this optimal
density it turns out that (90377) Sedna is a typical OC member.
5.2. Efficiency

Next it is interesting to know how many of the comets from
the Jupiter–Saturn region are in the OC at any time during our
simulations. This will once again be demonstrated in the form
of a figure.

Fig. 7 displays the fraction of comets in the OC as a function
of time for the same runs as Fig. 6, with the densest again be-
ing in the top-left panel. Fractions at the end of the runs range
from 2–18%, depending on cluster density and time. The frac-
tions of objects in each population are computed as follows:
a total of 2200 comets were used per run, 200 of which are in
the Kuiper Belt. Since the Kuiper Belt cannot be scattered by
Jupiter and Saturn, we do not include them in the statistics used
here. This leaves a total of 2000 particles that can be scattered.
The “quiescent” population is computed as the number of par-
ticles that have q < 35 AU and e < 0.1 out of the total. This
fraction is always 29–30%, caused by Trojans of Jupiter and
Saturn as well as a belt of dynamically cold particles beyond
Saturn. The only cases where this differs are for a few runs for
clusters with ρ0 = 106 M� pc−3, in which the planetary system
is either destroyed or stirred up by a close stellar passage. Hence
69–70% of particles are dynamically active, i.e., these are part
of the non-quiescent population. The fraction of objects in the
JS-SD is the fraction of objects out of the dynamically active
comets that satisfy q < 35 AU and e > 0.1. For the OC this be-
comes comets with q > 35 AU. During every run, some of the
comets end up hitting either Jupiter or Saturn (with a typical ra-
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Fig. 7. For the same runs as in Fig. 6, this plot shows the fraction of comets in the OC out of the total number of dynamically active particles still in the simulation.
For the low-density clusters the OC takes more time to take shape while for the high-density cases the OC reaches a maximum efficiency well before the end of the
run. This decrease is caused by stripping of the comets by the tide and the passing stars.
tio of 3:1 in favor of Jupiter). This fraction of comets hitting a
planet is fairly constant for all the runs, and is 7–9% of the dy-
namically active population. When taken into account, one can
compute the fraction of comets that are either too far from the
Sun or are ejected (typically 75–85% of the dynamically active
population).

One might argue that the fraction of objects in the JS-SD
population is not very different from the OC population and
thus that our results are not much different from Dones et al.
(2004). Yet one has to keep in mind that the JS-SD population
continues to evolve after our runs are terminated. The median
q for the JS-SD population at the end of most of the runs lies
in the vicinity of 9 AU, indicating that, by analogy with the
SD simulations of Duncan and Levison (1997), the JS-SD has
evolved significantly. However, once Uranus and Neptune have
formed and begin to scatter the comets about, the SD population
will increase, reach a maximum and then decrease again.

Assuming there are no unusually strong stellar encounters,
the efficiency of populating the OC usually reaches a maximum
before it falls off again before the end of the runs, although the
resulting decrease is slower than the initial building up. The
later decrease is caused by three effects: first, distant stellar
perturbations either directly strip away the outermost comets
or torque the perihelia of some back into the planetary region
where ejection may occur; second, some comets end up fur-
ther than the tidal radius around the Sun, which varies as the
Sun orbits the cluster; third, close stellar encounters can change
the velocity of the Sun by an amount large enough to leave the
OC unbound (Levison et al., 2004). These three effects account
for the fact that the decrease in efficiency starts later the lower
the central density of the cluster, because there are not so many
stars to do the stripping and the tidal radius around the Sun is
larger as well. This implies that the OC’s population is a func-
tion of when the Sun left the cluster. In the top-left panel of
Fig. 7, a substantial OC has formed after about 500 kyr. If the
Sun were to leave the cluster at that time, the efficiency would
be higher than at the end of the run. For high-density clusters
is plausible that the Sun left the cluster earlier than for low-
density ones, so that the efficiency at 500 kyr is as likely as any
other to be representative of the outcome of the simulation and
therefore realistic.

5.3. Inclination and argument of pericentre

In this subsection, examples of the distributions in the incli-
nation and the argument of pericentre are given with the help
of a few snapshots, to get an idea of the typical orbit of an OC
comet.

Fig. 8 depicts the inclination distribution as a function of
semi-major axis for the same runs as in Fig. 6. In the middle
right panel the distribution is fairly flattened while in the previ-
ous three panels the inclination distribution is fairly isotropic.
The flattened distribution in the middle right panel is caused
by the Sun rushing through the cluster’s pericentre just before
the end of the run, which result in a large number of comets
getting lifted by a small amount by the tides just before and
after the pericentre passage. As can be noted in the top-two
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Fig. 8. Snapshots of the inclination distribution as a function of semi-major axis for the same runs as used in Figs. 6 and 7. All panels show significant clustering
except the top-left one, suggesting faster evolution and more randomization of orbits.
panels, the distribution beyond a certain value of a, typically
those obtained where the values of tq and td for q ∼ 10 AU
intersect, appears isotropic, so that the existence of Sedna-like
objects on retrograde orbits is predicted. However, the ratio of
prograders to retrograders is determined by 〈cos i〉, which usu-
ally is close to zero, so that the ratio is about 1:1. One might
note that (90377) sedna and 2000 CR105 have low-inclination
orbits. If the location of 2000 CR105 indicates the inner edge
of the OC, then the region occupied by (90377) Sedna should
contain a significant fraction of objects on retrograde orbits.
Further sensitive surveys will be required to determine if this
is the case.

The reason some comets are retrograde in the frame of the
Solar System is caused by the fact that the angle η, which is
the comet’s inclination in the cluster frame (see Appendix A),
can range from 0◦ to 90◦, due to the Kozai-like mechanism.
Initially η is close to i�, which is the fixed inclination of the
Solar System plane with respect to the orbit of the Sun. For a
prograde solar orbit, although η can only oscillate between two
values in the interval 0◦–90◦, the inclination of the comet in the
Solar System plane, i, can become retrograde. The latter needs
to be computed from

(11)cosη = cos i� cos i + sin i� sin i cos(Ω − Ω�),

and can reach values larger than 90◦, depending on Ω − Ω�,
which is also measured in the Solar System frame. If the coeffi-
cient in the second term is larger than the first, then cos i < 0 in
order for cosη > 0, which can only be satisfied when i > 90◦.
Now that the inclination distribution is known and can be ex-
plained, the distribution in ω is discussed next.

Fig. 9 shows the distribution of ω after 3 Myr. In the top-left
panel, the stars randomize the values of ω too quickly in or-
der for the clustering caused by the tides to remain visible at
the end of the run. In specific intervals of a, particularly visi-
ble in the bottom three panels, the values of ω tend to cluster
around 0◦ and 180◦, which is caused by the Kozai effect (see
Appendix A). However, it is unlikely that this distribution in ω

still exists today for (90377) Sedna-like objects because of pre-
cession induced by the planets after the Sun leaves the cluster
and, for very distant objects, the Galactic Tide (e.g., Heisler and
Tremaine, 1986). To test this hypothesis, we computed the or-
bit of (90377) Sedna for 4 Gyr under the perturbations of the
four jovian planets and the Galactic Tide and found the preces-
sion period of ω to be 2.0–2.5 Gyr, allowing for uncertainties
in the orbit. An analytical estimate by treating the jovians as
an effective J2 component of the Sun yields Pω = 1.87 Gyr
and PΩ = 3.67 Gyr (see Appendix C). Comets at (90377) Sed-
na’s location precess on timescales less than or comparable to
the age of the Solar System. In addition, the precession is a
strong function of inclination and eccentricity, so that the struc-
ture seen in Fig. 9 is no longer preserved today because of
differential precession. For larger a, the precession time in-
creases.

The figures above gave a qualitative description of the vari-
ous OCs that were formed during the runs, their locations and
distributions in q , i and ω. What follows is a more quantitative
description of the same results.
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Fig. 9. Snapshots of the distribution of ω as a function of semi-major axis. Significant clustering is apparent, except in the top-left panel, for ω = 0◦ and ω = 180◦ ,
which is caused by the Kozai-like mechanism induced by the cluster tide. The evolution in ω is slowest around these values (see Appendix A). The values of (90377)
Sedna, 2000 CR105 and 2003 UB313 are not shown since their precession timescales in the current environment are too quick to preserve their original values.
5.4. Statistical analysis

In order to describe the various OCs that were formed during
the runs, statistics was performed on the data. In order to corre-
late the data with the mean density the Sun encountered during
the run, this density was computed first and is presented in the
fourth column of Table 2.

Since the typical efficiency of placing comets in the OC after
3 Myr is low, there are only a few comets to perform statistics
on, resulting in larger errors. Therefore the analysis of the OC
was performed over the last 0.5 Myr. Although the runs with
the highest density evolve quicker, the averaged results seem
to provide a good description. Pooling the data over this time
interval resulted in improved statistics.

First, the mean distance of each comet is computed, which
is given by

(12)〈r〉 = 1

2π

2π∫
0

a(1 − e cosE)dM = a

(
1 + 1

2
e2

)
,

where M is the mean anomaly, and subsequently sorted in in-
creasing order. The 10th, 50th and 90th percentile values were
then computed and are termed r10, r50 and r90. Mean values of
e2 and cos i were subsequently computed for values of 〈r〉 cen-
tred on r10, r50 and r90 with a 10% margin on either side, again
to allow for better statistics. This data is displayed in Fig. 10.
The upper-left panel displays the fraction of dynamically active
comets in the JS-SD, the OC and the fraction that is ejected vs
central density. The error bars indicate the minimum and max-
imum values respectively while the data points are the mean
values. The offsets, which are also evident in the next panels,
are done for clarity. The next three panels show r10, r50 and
r90 vs ρ0 in the upper-right panel, the value of 〈cos i〉 at r10,
r50 and r90 in the lower-left panel and the value of 〈e2〉 in the
lower-right panel. Note that in the lower-left panel, the value of
〈cos i〉 at r10 is larger than at r50 and r90, as expected. In addi-
tion, from Fig. 10 one can see that a typical OC member for the
runs where ρ0 = 102 M� pc−3 resides much farther away than
when, say ρ0 = 104. This was shown in Fig. 6. Fig. 11 plots
r50 vs 〈ρ〉 and a least-squares fit can be applied when 〈ρ〉 > 10.
The slope is β = −0.49±0.1. The same slope is obtained when
using r10 instead of r50 and the ratio r50/r10 ≈ 3 ± 1 for all the
runs. The strong correlation between r50 and 〈ρ〉 suggests that
the solar inclination does not play a significant role in the extent
of the OC but the dominant parameter is mean density (which
is determined implicitly by the semi-major axis and eccentricity
of the solar orbit). While the strength of the correlation might
be surprising, it is no surprise that there is one. After all, the
tidal torquing time, tq , is inversely proportional to 〈ρ〉, so that
in order to lift a comet’s pericentre in a short-enough time to
prevent ejection by either Jupiter or Saturn, the semi-major axis
needs to increase as well to compensate for this slower lifting
time.

A natural question to ask is what is the density profile of the
OC? Fig. 12 shows n(〈r〉), the density of comets, vs the mean
value of the distance, 〈r〉. The plot shows these profiles for the
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Fig. 10. This plot summarizes the fraction of comets in the JS-SD, the OC and that are ejected in the top-left panel as a function of ρ0, the central cluster density. In
this panel and the subsequent ones, the error bars denote the minimum and maximum values, while the centre value is the mean over all the runs for that density.
Some of the data is offset for clarity. The top-right panel shows the mean values of r10, r50 and r90. The bottom-left panel shows 〈cos i〉 at r10, r50 and r90. The
bottom-right panel shows 〈e2〉 at the same distances.

Fig. 11. The median value of an OC comet’s mean distance at the end of the runs is plotted vs the mean density the Sun encountered in that particular run. The
best-fit curve for 〈ρ〉 � 10 is 〈r〉 ∝ 〈ρ〉−0.49.
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Fig. 12. A plot of the density of comets in the OC, n(〈r〉), as a function of 〈r〉.
The different symbols indicate different clusters and thus different densities.
The data is taken from the same runs as in Fig. 6. A least-squares fit gives
n(〈r〉) ∝ 〈r〉−3.5, which agrees with DQT87.

same runs depicted in Fig. 6. A least-squares fit to each run
separately gives n(〈r〉) ∝ 〈r〉γ , where γ = −3.5 with an error
of about 10%, the same distribution as found by DQT87; it is
valid for all the runs and a large range in 〈r〉, as well as it being
valid in the (90377) Sedna region. The straight line in the plot
has a slope of −3.5. Having described the density profiles, the
effect of the stars vs the tides in the cluster is examined next.

5.5. Stellar encounters vs tidal lifting

A good description of what happens when a binary system,
such as the Sun–comet system, encounters a star is given in
Heggie and Hut (1993), who state that physically, high-velocity
encounters lead to small changes in the binding energy of the
binary, unless the unbound star comes very close to one of the
binary components, often destroying the binary in the process.

It has been observed that the most damaging encounters strip
away a large portion of the OC: it is the close passages to the
Sun that are the most damaging, since they give the Sun a large
velocity kick which subsequently unbinds a substantial fraction
of the OC (Levison et al., 2004). Slow encounters, on the other
hand, are also able to change the binding energy of the Sun–
comet binary significantly, provided that the minimum distance
of the unbound star is not much greater than the semi-major axis
of the binary (Heggie and Hut, 1993). Beyond this distance, the
effect of the encounter falls off exponentially.

An issue to be determined in our models is the relative effect
of the stars vs the tides. In order not to introduce any bias caused
by the solar eccentricity, a total of eight additional runs were
performed: two central densities were selected and for each of
these, two orbits were chosen: one with a small eccentricity
and one with a large one. In half of the runs the stars are in-
cluded and the tides are set to zero, while in the remaining ones
the tides are included and there are no stars. The results were
then compared to those runs with both stars and tides present,
and are presented in Tables 3 and 4. The differences in Table 3
for r10–r90 are not extensive for large densities, indicating that
Table 3
The 10th, 50th and 90th percentile values of the mean distance 〈r〉 of the OC
members for cases with only tides (denoted by ‘T’), only stars (denoted by ‘S’)
and both stars and tides (denoted by ‘B’)

Run 103 105

T1 4196, 6825, 15626 1593, 2870, 8412
S1 4771, 11381, 56768 1029, 2189, 16821
B1 3646, 7275, 27160 1192, 2680, 9812
T2 3487, 6919, 26839 375, 1094, 2226
S2 5533, 10910, 41409 156, 494, 2371
B2 4332, 8225, 25714 170, 447, 2090

Units are in AU. Central cluster densities are on the top.

Table 4
The efficiencies of the same runs from Table 3

Run 103 105

T1 11.6 24.4
S1 11.1 3.3
B1 13.0 3.4
T2 16.2 8.7
S2 9.7 3.0
B2 12.9 5.9

The units are the same as in Table 3.

in this regime the stars and tides have comparable effects. For
the low density this is not the case and the tides clearly dom-
inate. Yet there is one thing that comes to attention: for the
low-density runs, the OC formed is more compact and has a
smaller value of r10 in the case where there are tides only than
in the case where there are stars only. This means that, on aver-
age, the torquing begins at smaller a when there are tides only.
In contrast, the clusters where ρ0 = 105 M� pc−3 show the op-
posite effect: here the OC formed with stars only has a smaller
value of r10 though it is almost equally extensive as in the case
where there are tides only. This suggests that when the density
is high, the cloud is shaped predominantly by stars—especially
the inner edge—while for low density it is the tides which do
this. In general it is the occasional, close passage of a star that
forms the inner edge of the OC.

Fig. 13 shows the efficiency vs time for one of the runs with
ρ0 = 105 and 〈ρ〉 = 1.44 × 104. In the case with tides only (top
panel) the number of comets in the OC increases smoothly.
One might ask whether or not the comets return after a libration
timescale. This does seem to happen on occasion, but even dis-
tant comets have libration timescales of order a million years, so
that they may not even return before the simulation is stopped,
since it also takes time for the comets to get to the OC as well. In
the case with stars only (middle panel), the process is stochas-
tic, as expected. The bottom panel is more or less a smoothed
version of the middle one. One can see that in the case where
the stars are present, the efficiency reaches a maximum and then
decreases before the end of the run is reached. This is proba-
bly caused by the stars stripping the comets and the reduction
in the number of comets left in the scattered disk to replenish
the lost OC. Also notice that, for the runs with a high density,
the efficiency in the cases where stars are present is much less
than in the case where there are only tides. This implies that
while the stellar encounters are capable of lifting a fraction of
comets into the OC, they are even more capable of stripping
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Fig. 13. Plots of the fraction of comets that are in the OC out of the total number of comets still in the run, for a case with tides only (top panel), stars only (middle
panel) and both tides and stars (bottom panel). The mean density of the cluster with both tides and stars is 〈ρ〉 = 1.44 × 104 M� pc−3. Note that the formation of
the OC happens smoothly in the case where there are tides only, while in the cases where stars are present the process is much more stochastic, as is expected. Also
notice that the stars are quite damaging to the OC in this case.
away these same comets through different encounters. The ef-
ficiencies of each run are shown in Table 4: for the runs with
low density, the efficiencies for both stars and tides are similar,
while for the high-density runs the efficiency using tides only
is much larger than with the stars present. This reaffirms that
in an environment with high density, the stars play a relatively
larger role than in a low-density environment and are more de-
structive. It should be noted that stars and tides can act very
differently for a small set of particular orbits, e.g., for the Sun
on a nearly-circular orbit deep inside the core of the cluster.
However, such orbits are atypical.

Fig. 14 shows snapshots of each OC at the end of the runs
presented in Fig. 13. It should be understood that these results
apply for an SFE of 25%. If this value is decreased to, say, 10%,
the results may differ.

5.6. (90377) Sedna, 2000 CR105 and 2003 UB313

A fitting question is what fraction of objects are on or-
bits similar to those of (90377) Sedna, 2000 CR105 and 2003
UB313? First, a definition is needed of such orbits. The range
in (a, e, i) space that was used to define objects on orbits sim-
ilar to (90377) Sedna, 2000 CR105 and 2003 UB313 are given
in Table 5. The runs were analyzed and the number of objects
that fit the criteria were counted and stored separately. In order
Table 5
Region in (a, q, i)-space for objects to be classified as having orbits similar to
those of 2003 UB313, 2000 CR105 and (90377) Sedna: this is used to create
Fig. 15

Object Range in a (AU) Range in q (AU) Range in i (◦)

2003 UB313 53–80 37–46 37–52
2000 CR105 200–300 40–50 15–30
Sedna 400–600 68–84 0–180

to improve statistics, the results were averaged over three time
intervals, from 0.5 to 1.5 Myr, from 1.5 to 2.5 Myr and from
2 to 3 Myr. These final results are plotted in Fig. 15, which
shows the percentage of objects on such orbits out of the total
number of objects in the OC as a function of 〈ρ〉. Note the dif-
ferent scales on the vertical axis. This was done deliberately for
clarity. The top panel is for objects on orbits similar to those
of 2003 UB313, the middle panel represents the fraction of ob-
jects similar to 2000 CR105 and the bottom panel is for (90377)
Sedna-like objects. The + symbols represent the first interval,
the × symbols represent the second interval while the asterisks
(∗) are for the end of the runs.

From Fig. 15 one can directly determine what kind of
average density one needs to produce objects like (90377)
Sedna, 2000 CR105 and 2003 UB313 through this mecha-
nism. It is clear that very few of these objects are produced



Star clusters and comet cloud 75
Fig. 14. Snapshots in a–q space at the end of the same runs used in Fig. 13. The top panel has tides only, the middle panel has stars only and the bottom panel has
both stars and tides present. Note the large difference in efficiency between the cases.
when 〈ρ〉 � 103 M� pc−3 and that the optimal density is
〈ρ〉 = 104–105 M� pc−3 for 2000 CR105 and (90377) Sedna,
though the latter is also present in runs with smaller density.
2003 UB313, however, only seems to be produced in a few runs
and only when the average density rivals the central value of
the Trapezium cluster (see, e.g., Kroupa, 2000). 2000 CR105
is a marginal case for 〈ρ〉 < 104 while it is plausible that
(90377) Sedna was created this way.

The remaining issue to be examined is the fate of the primor-
dial Kuiper Belt.

5.7. Fate of the Kuiper Belt

Observations indicate that there is little material on low-
eccentricity orbits beyond 50 AU in the Kuiper Belt. In addi-
tion, Gomes et al. (2004) suggested that the primordial Kuiper
Belt must have been truncated at 30 AU to stop Neptune’s mi-
gration. Here we investigate the excitation of the primordial
Kuiper Belt due to stellar encounters while the Sun was in an
embedded cluster. In the simulations discussed above, two hun-
dred test particles were placed on cold orbits from 20 to 50 AU
to simulate this primordial Kuiper Belt.

The simulations contained a primordial Kuiper Belt, con-
sisting of 200 comets spaced evenly between 20 and 50 AU.
This Kuiper Belt was placed there to check whether or not
it would get stirred up by passing stars during the runs. It is
known (Kenyon and Bromley, 2002) that once the eccentric-
ities of Kuiper Belt objects reach 0.05 or larger, the mutual
collisions occur at velocities that shatter the objects rather than
causing them to stick together. Therefore the Kuiper Belt was
examined at the end of the runs to check whether this condition
occurred or not and if it did, at what value of semi-major axis.
The analysis was performed as follows: at the end of the run, the
comets in the Kuiper Belt were binned, with each bin contain-
ing ten comets. The mean eccentricity and standard deviation
of the eccentricity were computed for each bin. The mean of
the semi-major axis of comets in the bin was also computed.
When the condition 〈e〉 > (0.05–1σ) was reached, the value of
the semi-major axis was noted and taken as the cut-off value of
the primordial Kuiper Belt.

This phenomenon of exciting the Kuiper Belt closer than 50
AU was observed in nine runs and are listed in Table 6. The
columns are the run, and the two central densities for the clus-
ters in which this phenomenon was observed. The first entry is
the mean eccentricity at the cutoff point within 1σ of 0.05, the
next value is the standard deviation, σ , and the third entry is the
value of the semi-major axis at which this cutoff occurred. The
entries <20 mean that the stirring occurred to within 20 AU.
When the letters ‘UB’ are written after the semi-major axis
value, it indicates that the run produced a 2003 UB313-like ob-
ject. In all cases the eccentricities of Jupiter and Saturn were
checked at the end of the simulations as well and it turned out
that Saturn’s eccentricity is the range from 0.01–0.05.

In many cases no excitation was discovered within 50 AU.
In order to determine what sort of mean density is needed to
excite the Kuiper Belt down to about 50 AU, some runs were
repeated with a Kuiper Belt ranging from 20 to 100 AU. The
entries for these additional runs are given in parenthesis.

As can be seen from Table 6, the cutoff point varies from
<20 AU to about 40 AU. In each of the runs where the
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Fig. 15. A plot of the fraction of objects in the OC on orbits similar to those of 2003 UB313 (top panel), 2000 CR105 (middle panel) and (90377) Sedna (bottom
panel) as a function of mean density 〈ρ〉. The + symbols are taken from t = 0.5–1.5 Myr, the × symbols are from t = 1.5–2.5 Myr and the asterisks ∗ are sampled
from t = 2.0–3.0 Myr. It is obvious that 2000 CR105 and 2003 UB313 are only created when the mean density is �104 (see text for a further discussion).
Table 6
The eccentricity, standard deviation in eccentricity and semi-major axis at
which the primordial Kuiper Belt got dynamically excited

Run 105 106

1 (>100) –
2 0.0480, 0.020, 35.8 –
3 0.0485, 0.0138, 29.1 0.0416, 0.0215, 40.6
4 (0.0441, 0.0248, 93.1) 0.0525, 0.0156, 28.5
5 (>100) (0.0534, 0.0311, 69.9)
6 (0.0491, 0.0182, 82.6) <20
7 (>100) <20 UB
8 (>100) <20 UB
9 (>100) 0.0484, 0.0204, 21.0 UB
0 (>100) 0.0473, 0.0130, 20.8

On top are the two central densities of the clusters for which this occurred and
on the left are the run number. The first entry is the mean eccentricity within a
1σ value of 0.05, the second entry is the standard deviation of the eccentricity
in that bin and the third is the semi-major axis at which this occurred. An entry
<20 means that even at 20 AU the Kuiper Belt was stirred to eccentricities
>0.05. An entry ‘UB’ means a 2003 UB313-like object was created during that
run.

Kuiper Belt was stirred up, there were (90377) Sedna-like and
2000 CR105-like objects. However, in most of the runs for clus-
ters with ρ0 = 105 M� pc−3, objects similar to these two were
reproduced, so that it is possible to form both (90377) Sedna
and 2000 CR105 without stirring the Kuiper Belt interior to
50 AU. In addition, Morbidelli and Levison (2004) find that if
the cluster was very dense, it would create an inner edge of the
OC close to the Sun. Since objects with q in the range 40–80 are
rare with a < 200 AU, this favors a less dense star cluster. Last,
in all the runs whenever a 2003 UB313-like object is produced,
the Kuiper Belt is excited at 20 AU or less. In other words it ap-
pears unlikely that one can produce an object like 2003 UB313
and leave the Kuiper Belt intact and the observations seem to
favor a looser cluster (Morbidelli and Levison, 2004).

The question of what mean density is needed to instigate
collisional grinding of the Kuiper Belt at 50 AU is difficult to
determine from our simulations. The excitation occurs because
of a close stellar passage and is therefore not only dependent
on the mean density but also on time. For each run the Kuiper
Belt’s was tabulated as a function of the mean density. It was
found that there was �50% chance that the eccentricities at
50 AU exceeded 0.05 when 〈ρ〉 � 105 M� pc−3. To excite it
to the same levels at 30 AU required mean densities of a factor
of a few larger.

6. Conclusions

Computer simulations have been performed of the formation
of the OC from comets starting in the pre-LHB Jupiter–Saturn
region while the Sun was in an embedded star cluster. The tidal
field caused by the cluster gas and stellar passages are taken
into account, as is the orbit of the Sun itself in the Plummer
potential of the cluster. The simulations showed that:

1. About 2–18% of the initial sample of comets from 4 to
12 AU ended up in the OC after 3 Myr.

2. The solar eccentricity and mean distance play a role in
the overall efficiency of creating the OC since it deter-
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mines 〈ρ〉, which is the leading parameter. Since stellar
perturbations dominate for larger densities, the solar incli-
nation is of lesser importance.

3. (90377) Sedna can be reproduced within a few Myr for
〈ρ〉 � 103 M� pc−3. In order to reproduce 2000 CR105,
mean densities of 104 M� pc−3 or higher are needed.

4. Based on the simulations performed, 2003 UB313 cannot
have formed by this mechanism without exciting and sub-
sequently destroying the Kuiper Belt to 20 AU or less.

5. The computations produce many OC objects on retrograde
orbits; in fact, the OC is fairly isotropic for 〈r〉 � r50.

6. When 〈ρ〉 � 10 M� pc−3, the median distance of the comet
from the Sun scales approximately as r50 ∝ 〈ρ〉−1/2.

7. The stars play a more prominent role for large densities,
where they are more destructive to the OC, too. For small
densities the tides are more important in shaping the OC.
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Appendix A. Derivation of tidal influence on comets

Define the position vector of the Sun relative to the cluster
centre to be �r�, the position vector of the comet to be �rc and the
heliocentric position of the comet is �d = �rc − �r�. Taking the
cluster centre to be fixed, for a comet with mass mc at position
�rc and the Sun of mass m� at position �r�, one has the equations
of motion

m��̈r� = − Gm�M�r�
(r2� + c2)3/2

− Gm�mc(�r� − �rc)
|�r� − �rc| ,

(A.1)mc �̈rc = − GmcM�rc
(r2

c + c2)3/2
− Gm�mc(�rc − �r�)

|�rc − �r�| .

This can be reduced to

�̈d + G(m� + mc) �d
d3

= GM�r�
(r2� + c2)3/2

(A.2)− GM(�r� + �d)

(|�r� + �d|2 + c2)3/2
.

One can write the right-hand side as ∇R, where R is the dis-
turbing function, given by

(A.3)R = GM√
|�r� + �d|2 + c2

+ GM(�r� · �d)

(r2� + c2)3/2
.

In general | �d| � |�r�| so that one can expand R in terms of �d to
give

(A.4)

R ≈ GM√
r2� + c2

[
1 − d2

2(r2� + c2)

+ 3(�r� · �d)2

2(r2� + c2)2

]
+ O

(
d3).

It can be proven that in the limit c → 0 and M� � M Eq. (A.4)
reduces to the disturbing function for two interacting point
masses (see, e.g., Kinoshita and Nakai, 1999). If the Sun is on a
circular orbit, the disturbing function can be averaged over both
the motion of the comet and the Sun. Assuming the Sun’s or-
bital plane about the cluster centre defines the reference plane
for the comet’s orbit, one has

(A.5)

R = γ
[
15e2 sin2 η cos 2ω

+ (
2 + 3e2)(3 cos2 η − 1 − 4ζ 2)],

where η is the comet’s inclination, and the comet’s other
elements are heliocentric and have their usual notation. In
Eq. (A.5) the parameter ζ is defined as ζ = c/r� and, following
Kinoshita and Nakai (1999),

(A.6)γ = n2�a2

16(1 + ζ 2)
,

where the mean angular motion of the Sun’s orbit, n�, satisfies

(A.7)n2� = GM

r3�(1 + ζ 2)3/2
.

The equations of motion derived from Eq. (A.5), with the use
of Lagrange’s planetary equations (Murray and Dermott, 1999),
of the variables e, ω and η become

(A.8)
de

dτ
= −30e

√
1 − e2 sin2 η sin 2ω,

(A.9)
dη

dτ
= −15e2 sin 2η sin 2ω√

1 − e2
,

(A.10)

dω

dτ
= 6[5 cos 2ω(sin2 η − e2) + 5 cos2 η − (1 − e2)(1 + 4ζ 2)]√

1 − e2
,

where we implicitly introduced a characteristic frequency, Γ ,
given by

(A.11)Γ = γ

na2
= n2�

16n(1 + ζ 2)
,

where n is the mean angular motion of the comet around the
Sun,

(A.12)n2 = GM�
a3

and where we used τ = Γ t . From Eq. (A.10) one can derive that
h = (1−e2) cos2 η, the z-component of the angular momentum,
is a constant by solving

(A.13)
de = 1 − e2

tanη.

dη e



78 R. Brasser et al. / Icarus 184 (2006) 59–82
To transform to a Solar System inclination, i, one uses
cosη = cos i cos i� + sin i sin i� cos(Ω − Ω�) where the ref-
erence plane is the invariable plane of the Solar System, and i�
is the inclination of the Sun’s orbit with respect to its orbital
plane.

There are two limiting cases: r� � c (ζ → 0) and r� � c

(ζ → ∞). In the former case, it can easily be shown that the
averaged disturbing function reduces to that of the Kozai mech-
anism (Kozai, 1962) while in the latter case the disturbing func-
tion reduces to that of a homogeneous sphere. The analytical
solution of e, η and ω shall be explored in more detail.

A.1. Case where ζ < 1

Following Kinoshita and Nakai (1999) introduce the variable
x = 1 − e2 so that h = x cos2 η. The constant of motion can be
written as

C = 15(1 − x)(1 − h/x) cos 2ω

(A.14)+ (5 − 3x)
(
3h/x − 1 − 4ζ 2).

A.1.1. Circulation of ω

At the time ω = 0 define x = x0 and η = η0, and thus x0 is
the maximum value of x and thus a minimum in e. Substituting
into Eq. (A.14) one has

(A.15)

cos 2ω = −(1 + 4ζ 2)x2 + [5(1 + h) − 4x0(1 − ζ 2)]x − 5h

5(1 − x)(x − h)
,

so that

(A.16)sin2 ω = 2x(1 − ζ 2)(x0 − x)

5(1 − x)(x − h)
,

(A.17)cos2 ω = (3 + 2ζ 2)(x2 − x)(x − x1)

5(1 − x)(x − h)
,

where

(A.18)x1 + x2 = 5(1 + h) − 2x0(1 − ζ 2)

3 + 2ζ 2
,

(A.19)x1x2 = 5h

3 + 2ζ 2
,

and x1 < x2. Physically x1 is the minimum value of x during
one revolution of ω and thus corresponds to the maximum ec-
centricity e1. The other root is physically meaningless. From
Lagrange’s planetary equations

(A.20)
dx

dτ
= − 15

2(1 + ζ 2)

(1 − x)(x − h)√
x

cosω sinω,

which reduces to

dx

dτ
= − 3

√
2

2(1 + ζ 2)

√
(3 + 2ζ 2)(1 − ζ 2)

(A.21)× √
(x2 − x)(x0 − x)(x − x1),

which is the same form as that of Kinoshita and Nakai (1999)
and reduces to their Eq. (20) when ζ = 0. The solution to
Eq. (A.21) can be written as

(A.22)x = x0 + (x1 − x0) cn2(θ, k),

or, in terms of eccentricities

(A.23)e2 = e2
0 + (

e2
1 − e2

0

)
cn2(θ, k),

where

(A.24)θ = 2K(k)

π

(
νt + π

2

)
,

(A.25)ν = 3
√

2πΓ

8K(k)(1 + ζ 2)

√
e2

1 − e2
2

√
(3 + 2ζ 2)(1 − ζ 2),

(A.26)k =
√

e2
1 − e2

0

e2
1 − e2

2

,

where K(k) is the complete elliptic integral of the first kind.
It should be noted that when one plots the solutions for x and
e they are out of phase by π . Following Kinoshita and Nakai
(1999), the normalized period of the argument of pericentre be-
comes

(A.27)�Pω = 8
√

2(1 + ζ 2)K(k)

3
√

e2
1 − e2

2

√
(3 + 2ζ 2)(1 − ζ 2)

.

A.1.2. Libration of ω

In the case ω librates, there are two values of the eccentricity
for each value of ω. As such, e0 is the smaller eccentricity at
ω = 90◦ and at t = 0. From Eq. (A.14) one has

cos 2ω

(A.28)

= −(1 + 4ζ 2)x2 + [5(1 + h) + 10h
x0

− 4x0ζ
2 + 6x0]x − 5h

5(1 − x)(x − h)
,

so that

(A.29)sin2 ω = 2x(1 − ζ 2)(x2 − x)

5(1 − x)(x − h)
,

(A.30)cos2 ω = (3 + 2ζ 2)(x0 − x)(x − x1)

5(1 − x)(x − h)
,

where

x1 = 5h

x0(3 + 2ζ 2)
,

(A.31)

x2 = 1

2(1 + ζ 2)

[
5

(
1 + h − h

x0

)

− x0
(
3 + 2ζ 2)].

Now

(A.32)x2 − x0 = 5(1 − x0)(x0 − h)

2x0(1 − ζ 2)
> 0,

so that x2 > x0. Therefore, the differential equation for x is the
same as Eq. (A.21). However, the solution is slightly different,
since

(A.33)e2 = e2
0 + (

e2
1 − e2

0

)
cn2(θ, k),
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with

(A.34)θ = 2K(k)

π
(νt + π),

(A.35)ν = 3
√

2πΓ

8K(k)(1 + ζ 2)

√
e2

1 − e2
2

√
(3 + 2ζ 2)(1 − ζ 2),

(A.36)k =
√

e2
1 − e2

0

e2
1 − e2

2

.

The period of ω is computed in the same way for the case of
circulation.

For the librating case, the maximum eccentricity is

(A.37)e1 = √
1 − x1 =

√
1 − 5 cosη1

3 + 2ζ 2
,

so that the critical inclination becomes

ηc = arccos

(√
3 + 2ζ 2

5

)
.

As ζ → 0 one is back to the classical Kozai mechanism and
ηc = 39.23◦. But as ζ → 1, ηc → 0, so that when the Sun is
close to the Plummer radius, the mutual inclination between
the comet and the Sun’s orbit needs to be very small for the
comets to librate in ω. The turning points of ω occur when ω̇ =
0, which can be solved to give

(A.38)cos 2ωc = 5h − x2(1 + 4ζ 2)

5(h − x2)
.

When ζ → 0 one is back to the classical Kozai regime. How-
ever, as ζ → 1 then the libration width increases to 90◦.

The above analysis was done where the Sun’s orbit is circu-
lar and ζ is a constant. It is shown that most torquing happens
when ζ ∼ 1. To solve for the case when ζ > 1, the roots x1 and
x2 need to be switched and the libration of ω revolves in the
opposite direction. Apart from that, the behavior is the same.

If we allow ζ to vary, the above analysis is no longer cor-
rect, but does give insight into possible features of the motion.
Variations in ζ will cause the values of e1 and e2 to change,
both in the case where ω librates or circulates, so that switch-
ing between these two regimes is possible. The variations in e,
modeled by Eq. (A.23), will now be a function of the Sun’s or-
bit. Hence the contours in the e–ω portraits pulse themselves
with time and the libration islands widen and narrow in a quasi-
periodic manner.

A.2. Case where ζ = 1

The case where ζ = 1 is special and even though its solu-
tion contains singularities, it will be listed here for purpose of
completeness. Substituting ζ = 1 in the case where ω circulates
yields no solution, so that circulation is not possible in this case.
As such, one proceeds from the librating case. Then

(A.39)cos 2ω = −x2 + [ 2h
x0

+ 2x0 − (1 + h)]x − h

(1 − x)(x − h)
,

so that

(A.40)sin2 ω = xx2

(1 − x)(x − h)
,

(A.41)cos2 ω = (x0 − x)(x − x1)

(1 − x)(x − h)
,

where

(A.42)x1 = h

x0
,

(A.43)x2 = 1 + h − x0 − h

x0
.

Thus

(A.44)
dx

dτ
= −15

4

√
x2(x0 − x)(x − x1),

which can be solved to give

(A.45)

x = 1

2
cot θ

[
1 + (x0 + x1) tan θ

−
√

1 + (x0 − x1)2 tan2 θ
]
,

where

θ = 15
√

x2Γ

4
t.

It should be noted that the above solution in Eq. (A.45) has
never been witnessed in the numerical simulations. The reason
is that this solution is attitude unstable so that one will always
witness a librating or circulating solution that contains no sin-
gularities like the one above.

A.3. Case where ζ > 1

To solve the case where ζ > 1, one needs to avoid running
into quantities becoming imaginary when the term 1 − ζ 2 be-
comes negative. Fortunately, there is a way out. Differentiating
Eq. (A.28) with respect to x and solving for ζ one finds

(A.46)

{
d cos 2ω

dx

}
ω=0

= 0,

when ζ = ±1. Additionally,

(A.47)

{
d2 cos 2ω

dx2

}
ω=0

= 0

also yields ζ = ±1. Hence, contrary to the classical Kozai
mechanism, where e is a minimum when ω = 0, it is now a
maximum, since there is a point of inflexion when ζ = 1. Orig-
inally x0 was defined to be a maximum and x1 < x2. Since the
former statement is no longer true but the latter is, one needs
to exchange the roots x1 and x2 in Eqs. (A.21) and (A.23).
Therefore, in principle the solution to the problem is the same,
with libration and circulation still occurring, but now the li-
bration regions appear below the circulation ones in the e–ω

portraits.
This is demonstrated in Figs. 16–18, where the contours in

the q–ω plane have been plotted for different values of ζ = 0.5
(Fig. 16), ζ = 1 (Fig. 17) and ζ = 2 (Fig. 18). Note that in the
case where ζ = 1 there is no circulation. Additionally, note that
the circulation regions for ζ = 0.5 and ζ = 2 are on opposite
sides of the libration regions, confirming our theory.
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Fig. 16. Contour levels of the disturbing function in q–ω space for ζ = 0.5
(r� > c).

Fig. 17. Contour levels of the disturbing function in q–ω space for ζ = 1
(r� = c).

Appendix B. Derivation of tidal torquing time, tq

Here the formula for tq is derived for the adapted tidal model
from Eq. (A.10). One has

(B.1)ė = −30Γ e
√

1 − e2 sin2 η sin 2ω.

Now q̇ = ȧ(1 − e) − aė and, for the secular evolution, ȧ = 0.
Additionally e ∼ 1, so that

√
1 − e2 ≈ √

2q/a. Then

(B.2)q̇ = 30Γ
√

2qa sin2 η sin 2ω.

DQT87 use 〈sin 2ω〉 = √
2/2, which is adopted here as well.

Hence

(B.3)q̇ = 30Γ sin2 η
√

qa.

Substituting Eqs. (A.11) and (A.7) into Eq. (B.3) and using
Eq. (2), one has, after some simplification

(B.4)q̇ = 5π
√

q

2
sin2 ηGρ0

a2

√
GM�

ζ 3

(1 + ζ 2)5/2
.

Fig. 18. Contour levels of the disturbing function in q–ω space for ζ = 2
(r� < c).

Now tq = �q/q̇ . When changing units so that G = 1, and a is
measured in AU, then M� = 4π2 and one eventually obtains

tq = 1.78 × 10−2 �q√
q

× csc2 η

(
103

a

)2(104

ρ0

)
(1 + ζ 2)5/2

ζ 3
,

which is the same as Eq. (6) and the unit of time is Myr.

Appendix C. Precession of (90377) Sedna

The precession frequency of (90377) Sedna and Sedna-like
objects can be roughly computed by treating the perturbations
of the jovian planets as an artificial J2 coefficient of the Sun.
This coefficient is computed as (see, e.g., Murray and Dermott,
1999)

(C.1)J2 = 1

2

4∑
i=1

mi

M�

(
ai

R�

)2

,

which, for the current configuration of the jovians, gives ap-
proximately J2 = 2.054 × 103. The induced precession fre-
quency of the argument of pericentre and node, averaged over
the mean anomaly, are given by

(C.2)ω̇ = 3n

4

(
R�
a

)2

J2
5 cos2 i − 1

(1 − e2)2
,

(C.3)Ω̇ = −3n

2

(
R�
a

)2

J2
cos i

(1 − e2)2
,

where n is the mean motion. Substituting the obtained value of
J2 and using a = 500 AU and (90377) Sedna’s inclination and
eccentricity, the precession period for ω computes to be about
1.87 Gyr, which is in reasonable agreement with numerical sim-
ulations. The period of regression for Ω is 3.67 Gyr, again in
good agreement with numerical simulations. From DQT87 the
precession period induced by the Galactic Tide is computed to
be of order 100 Gyr. Therefore, the planetary effects dominate
today.
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Appendix D. Distribution of changes in orbital energy

From DQT87 one knows that the scattering process by
Jupiter and Saturn becomes a simple one once a � q , since the
perturbations in energy are much more significant than those in
q and i and the encounters are uncorrelated. The energy kicks
occur at pericentre and since q remains approximately fixed if
no close approach occurs, the energy perturbations are a ran-
dom walk process.

From the works of Fernández (1981) as well as DQT87, one
knows what the root-mean-square kick in energy is as a func-
tion of q for the current planetary configuration, given a value
of i. However, since one deals with the pre-LHB system, one
cannot guarantee that the energy kicks are the same as in the
current configuration for a given q and i. Also, in principle the
rms value is undefined, but can be defined if the number of scat-
tering experiments is finite.

Therefore a simple experiment was set up to determine the
root-mean-square kicks for the pre-LHB configuration, includ-
ing Uranus and Neptune, and these were compared to the cur-
rent configuration and the values obtained by DQT87: a sys-
tem was set up consisting of the giant planets and 104 test
particles with a = 103 AU and q ∈ [4,38] AU and i was si-
nusoidally chosen in the interval i ∈ [0◦,30◦], to be consis-
tent with DQT87. There were 270 particles per value of q

and these were started randomly on their orbits at a distance
r ∈ [40,100] AU to account for randomness in the planets’ po-
sitions. The change in energy after their pericentre passage was
computed as x = |1/a − 1/a0|. The root-mean-square value
over all 270 particles per value of q was used as the typical
energy kick, u.

The results are shown in Fig. 2. Due to the more compact
configuration of the pre-LHB system, the value of the root-
mean-square kick falls off much more rapidly than in the cur-
rent configuration, as is expected. However, up to q ∼ 15 AU,
the typical value of u for both systems is rather similar. It is only
beyond this distance that the two systems differ significantly.

The reader should be made aware that the distribution of
kicks from a planet as a function of u is highly non-Gaussian
(Everhart, 1968). For a Gaussian distribution the rms value is
∼1.5 the median value. For the observed distribution of kicks,
this factor is close to 6 (Everhart, 1968) and is caused by the
long tail of the distribution, which goes as |u|−3. Everhart’s
(1968) distribution is

(D.1)h(u) = Ae−(
B|u|−1

)2 + C

(D2 + u2)3/2
,

where the parameters A, B , C and D are determined from ex-
periment. The parameter A is chosen so that the distribution is
properly normalized. The normalized cumulative distribution is
therefore

H(u) = A
√

π

2B

(
erf

(
B|u| − 1

) + erf(1)
)

(D.2)+ Cu

D2
√

D2 + u2
,

while one can compute a mean kick for positive values of u

only, the rms value is undefined since the integral
∫

u2h(u)du

diverges logarithmically (see Eq. (D.4) below).
The mean value of |u| is computed as

(D.3)

〈|u|〉 =
∞∫

0

uh(u)du = A

2B2

(√
π

(
1 + erf(1)

) + e−1
)

+ C

D
.

However, the value of 〈u2〉 needs to be computed from

∞∫
0

u2h(u)du = 3A
√

π erf(Bu − 1)

4B3
− A

2B2
e−(Bu−1)2

(
u + 1

B

)

(D.4)

− Cu√
D2 + u2

+ C ln
(
u +

√
D2 + u2

)∣∣∞
0 ,

which diverges logarithmically. In principle the upper limit of
integration is not infinity since one is limited to the physical
radius of the planet, but because of the logarithmic term, the rms
value increases as

√
ln(N), where N is the number of scattering

experiments. DQT87 was aware of both these issues and took
the observed rms value as a function of q computed after a fixed
number of experiments, and obtained results similar to Fig. 2.

However, since the rms value poorly defined, it shall not
be used here but a substitute value is found: by using parame-
ters from Everhart (1968) that are typical to the problem, it is
determined that the distribution becomes highly non-Gaussian
when u ∼ 4GMp/ap and define u0 = GMp/ap . Here the tail
of the distribution begins to dominate and for this value of u

the normalized cumulative function H(u) ∼ 0.74, so that there
is approximately a 25% chance a comet gets a kick u � 4u0.
Even though the most frequent kicks are of order u0, it is the
infrequent, large kicks that dominate the motion: under the dif-
fusion approximation it would take 16 passages with kicks of u0
to where one kick of 4u0 takes the comet directly and this hap-
pens after about four passages. Therefore a new value for the
typical kick other than the poorly-defined rms value is needed.

For the current distribution the average value, 〈|u|〉 ∼ 8u0, so
that the typical kick is |u| ∈ (4u0,8u0). As it turns out, the mean
value, 〈|u|〉, corresponds well with the rms value of DQT87 and
those found in the present work. It is this mean value that has
been used to compute the value of td in Fig. 3.
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